考研數(shù)學(xué)容易混淆的概念辨析歸納_第1頁(yè)
考研數(shù)學(xué)容易混淆的概念辨析歸納_第2頁(yè)
考研數(shù)學(xué)容易混淆的概念辨析歸納_第3頁(yè)
考研數(shù)學(xué)容易混淆的概念辨析歸納_第4頁(yè)
考研數(shù)學(xué)容易混淆的概念辨析歸納_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高等數(shù)學(xué)部分易混淆概念第一章:函數(shù)與極限一、數(shù)列極限大小的判斷例1:判斷命題是否正確.若SKIPIF1<0,且序列SKIPIF1<0的極限存在,SKIPIF1<0解答:不正確.在題設(shè)下只能保證SKIPIF1<0,不能保證SKIPIF1<0.例如:SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0.例2.選擇題設(shè)SKIPIF1<0,且SKIPIF1<0()A.存在且等于零B.存在但不一定等于零C.不一定存在D.一定不存在答:選項(xiàng)C正確分析:若SKIPIF1<0,由夾逼定理可得SKIPIF1<0,故不選A與D.取SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,但SKIPIF1<0不存在,所以B選項(xiàng)不正確,因此選C.例3.設(shè)SKIPIF1<0SKIPIF1<0()A.都收斂于SKIPIF1<0B.都收斂,但不一定收斂于SKIPIF1<0C.可能收斂,也可能發(fā)散D.都發(fā)散答:選項(xiàng)A正確.分析:由于SKIPIF1<0,得SKIPIF1<0,又由SKIPIF1<0及夾逼定理得SKIPIF1<0因此,SKIPIF1<0,再利用SKIPIF1<0得SKIPIF1<0.所以選項(xiàng)A.二、無(wú)界與無(wú)窮大無(wú)界:設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,如果存在正數(shù)SKIPIF1<0,使得SKIPIF1<0則稱(chēng)函數(shù)SKIPIF1<0在SKIPIF1<0上有界,如果這樣的SKIPIF1<0不存在,就成函數(shù)SKIPIF1<0在SKIPIF1<0上無(wú)界;也就是說(shuō)如果對(duì)于任何正數(shù)SKIPIF1<0,總存在SKIPIF1<0,使SKIPIF1<0,那么函數(shù)SKIPIF1<0在SKIPIF1<0上無(wú)界.無(wú)窮大:設(shè)函數(shù)SKIPIF1<0在SKIPIF1<0的某一去心鄰域內(nèi)有定義(或SKIPIF1<0大于某一正數(shù)時(shí)有定義).如果對(duì)于任意給定的正數(shù)SKIPIF1<0(不論它多么大),總存在正數(shù)SKIPIF1<0(或正數(shù)SKIPIF1<0),只要SKIPIF1<0適合不等式SKIPIF1<0(或SKIPIF1<0),對(duì)應(yīng)的函數(shù)值SKIPIF1<0總滿足不等式SKIPIF1<0則稱(chēng)函數(shù)SKIPIF1<0為當(dāng)SKIPIF1<0(或SKIPIF1<0)時(shí)的無(wú)窮大.例4:下列敘述正確的是:②如果SKIPIF1<0在SKIPIF1<0某鄰域內(nèi)無(wú)界,則SKIPIF1<0如果SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0某鄰域內(nèi)無(wú)界解析:舉反例說(shuō)明.設(shè)SKIPIF1<0,令SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,而SKIPIF1<0SKIPIF1<0故SKIPIF1<0在SKIPIF1<0鄰域無(wú)界,但SKIPIF1<0時(shí)SKIPIF1<0不是無(wú)窮大量,則①不正確.由定義,無(wú)窮大必?zé)o界,故②正確.結(jié)論:無(wú)窮大必?zé)o界,而無(wú)界未必?zé)o窮大.三、函數(shù)極限不存在SKIPIF1<0極限是無(wú)窮大當(dāng)SKIPIF1<0(或SKIPIF1<0)時(shí)的無(wú)窮大的函數(shù)SKIPIF1<0,按函數(shù)極限定義來(lái)說(shuō),極限是不存在的,但是為了便于敘述函數(shù)的性態(tài),我們也說(shuō)“函數(shù)的極限是無(wú)窮大”.但極限不存在并不代表其極限是無(wú)窮大.例5:函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0的極限不存在.四、如果SKIPIF1<0不能退出SKIPIF1<0例6:SKIPIF1<0,則SKIPIF1<0,但由于SKIPIF1<0在SKIPIF1<0的任一鄰域的無(wú)理點(diǎn)均沒(méi)有定義,故無(wú)法討論SKIPIF1<0在SKIPIF1<0的極限.結(jié)論:如果SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0的某一去心鄰域內(nèi)滿足SKIPIF1<0,則SKIPIF1<0.反之,SKIPIF1<0為無(wú)窮大,則SKIPIF1<0為無(wú)窮小。五、求函數(shù)在某點(diǎn)處極限時(shí)要注意其左右極限是否相等,求無(wú)窮大處極限要注意自變量取正無(wú)窮大和負(fù)無(wú)窮大時(shí)極限是否相等。例7.求極限SKIPIF1<0解:SKIPIF1<0,因而SKIPIF1<0時(shí)SKIPIF1<0極限不存在。SKIPIF1<0,因而SKIPIF1<0時(shí)SKIPIF1<0極限不存在。六、使用等價(jià)無(wú)窮小求極限時(shí)要注意:(1)乘除運(yùn)算中可以使用等價(jià)無(wú)窮小因子替換,加減運(yùn)算中由于用等價(jià)無(wú)窮小替換是有條件的,故統(tǒng)一不用。這時(shí),一般可以用泰勒公式來(lái)求極限。(2)注意等價(jià)無(wú)窮小的條件,即在哪一點(diǎn)可以用等價(jià)無(wú)窮小因子替換例8:求極限SKIPIF1<0分析一:若將SKIPIF1<0寫(xiě)成SKIPIF1<0,再用等價(jià)無(wú)窮小替換就會(huì)導(dǎo)致錯(cuò)誤。分析二:用泰勒公式SKIPIF1<0原式SKIPIF1<0。例9:求極限SKIPIF1<0解:本題切忌將SKIPIF1<0用SKIPIF1<0等價(jià)代換,導(dǎo)致結(jié)果為1。SKIPIF1<0七、函數(shù)連續(xù)性的判斷(1)設(shè)SKIPIF1<0在SKIPIF1<0間斷,SKIPIF1<0在SKIPIF1<0連續(xù),則SKIPIF1<0在SKIPIF1<0間斷。而SKIPIF1<0在SKIPIF1<0可能連續(xù)。例10.設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0間斷,SKIPIF1<0在SKIPIF1<0連續(xù),SKIPIF1<0在SKIPIF1<0連續(xù)。若設(shè)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0間斷,但SKIPIF1<0在SKIPIF1<0均連續(xù)。(2)“SKIPIF1<0在SKIPIF1<0點(diǎn)連續(xù)”是“SKIPIF1<0在SKIPIF1<0點(diǎn)連續(xù)”的充分不必要條件。分析:由“若SKIPIF1<0,則SKIPIF1<0”可得“如果SKIPIF1<0,則SKIPIF1<0”,因此,SKIPIF1<0在SKIPIF1<0點(diǎn)連續(xù),則SKIPIF1<0在SKIPIF1<0點(diǎn)連續(xù)。再由例10可得,SKIPIF1<0在SKIPIF1<0點(diǎn)連續(xù)并不能推出SKIPIF1<0在SKIPIF1<0點(diǎn)連續(xù)。(3)SKIPIF1<0在SKIPIF1<0連續(xù),SKIPIF1<0在SKIPIF1<0連續(xù),則SKIPIF1<0在SKIPIF1<0連續(xù)。其余結(jié)論均不一定成立。第二章導(dǎo)數(shù)與微分一、函數(shù)可導(dǎo)性與連續(xù)性的關(guān)系可導(dǎo)必連續(xù),連續(xù)不一定可導(dǎo)。例11.SKIPIF1<0在SKIPIF1<0連讀,在SKIPIF1<0處不可導(dǎo)。二、SKIPIF1<0與SKIPIF1<0可導(dǎo)性的關(guān)系(1)設(shè)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0連續(xù),則SKIPIF1<0在SKIPIF1<0可導(dǎo)是SKIPIF1<0在SKIPIF1<0可導(dǎo)的充要條件。(2)設(shè)SKIPIF1<0,則SKIPIF1<0是SKIPIF1<0在SKIPIF1<0可導(dǎo)的充要條件。三、一元函數(shù)可導(dǎo)函數(shù)與不可導(dǎo)函數(shù)乘積可導(dǎo)性的討論設(shè)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0連續(xù),但不可導(dǎo),又SKIPIF1<0存在,則SKIPIF1<0是SKIPIF1<0在SKIPIF1<0可導(dǎo)的充要條件。分析:若SKIPIF1<0,由定義SKIPIF1<0反之,若SKIPIF1<0存在,則必有SKIPIF1<0。用反證法,假設(shè)SKIPIF1<0,則由商的求導(dǎo)法則知SKIPIF1<0在SKIPIF1<0可導(dǎo),與假設(shè)矛盾。利用上述結(jié)論,我們可以判斷函數(shù)中帶有絕對(duì)值函數(shù)的可導(dǎo)性。四、在某點(diǎn)存在左右導(dǎo)數(shù)時(shí)原函數(shù)的性質(zhì)(1)設(shè)SKIPIF1<0在SKIPIF1<0處存在左、右導(dǎo)數(shù),若相等則SKIPIF1<0在SKIPIF1<0處可導(dǎo);若不等,則SKIPIF1<0在SKIPIF1<0連續(xù)。(2)如果SKIPIF1<0在SKIPIF1<0內(nèi)連續(xù),SKIPIF1<0,且設(shè)SKIPIF1<0則SKIPIF1<0在SKIPIF1<0處必可導(dǎo)且SKIPIF1<0。若沒(méi)有如果SKIPIF1<0在SKIPIF1<0內(nèi)連續(xù)的條件,即設(shè)SKIPIF1<0,則得不到任何結(jié)論。例11.SKIPIF1<0,顯然設(shè)SKIPIF1<0,但SKIPIF1<0,SKIPIF1<0,因此極限SKIPIF1<0不存在,從而SKIPIF1<0在SKIPIF1<0處不連續(xù)不可導(dǎo)。第三章微分中值定理與導(dǎo)數(shù)的應(yīng)用一、若SKIPIF1<0若SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,再由微分中值定理SKIPIF1<0SKIPIF1<0同理,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0若SKIPIF1<0,再由微分中值定理SKIPIF1<0SKIPIF1<0同理可證SKIPIF1<0時(shí),必有SKIPIF1<0第八章多元函數(shù)微分法及其應(yīng)用8.1多元函數(shù)的基本概念1.SKIPIF1<0,SKIPIF1<0,使得當(dāng)SKIPIF1<0,SKIPIF1<0且SKIPIF1<0時(shí),有SKIPIF1<0,那么SKIPIF1<0成立了嗎?成立,與原來(lái)的極限差異只是描述動(dòng)點(diǎn)SKIPIF1<0與定點(diǎn)SKIPIF1<0的接近程度的方法不一樣,這里采用的是點(diǎn)的矩形鄰域,,而不是常用的圓鄰域,事實(shí)上這兩種定義是等價(jià)的.2.若上題條件中SKIPIF1<0的條件略去,函數(shù)SKIPIF1<0就在SKIPIF1<0連續(xù)嗎?為什么?如果SKIPIF1<0條件沒(méi)有,說(shuō)明SKIPIF1<0有定義,并且SKIPIF1<0包含在該點(diǎn)的任何鄰域內(nèi),由此對(duì)SKIPIF1<0,都有SKIPIF1<0,從而SKIPIF1<0,因此我們得到SKIPIF1<0SKIPIF1<0,即函數(shù)在SKIPIF1<0點(diǎn)連續(xù).3.多元函數(shù)的極限計(jì)算可以用洛必塔法則嗎?為什么?不可以,因?yàn)槁灞厮▌t的理論基礎(chǔ)是柯西中值定理.8.2偏導(dǎo)數(shù)1.已知SKIPIF1<0,求SKIPIF1<0令SKIPIF1<0,SKIPIF1<0那么解出SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0或者SKIPIF1<08.3全微分極其應(yīng)用1.寫(xiě)出多元函數(shù)連續(xù),偏導(dǎo)存在,可微之間的關(guān)系偏導(dǎo)數(shù)SKIPIF1<0,SKIPIF1<0連續(xù)SKIPIF1<0Z可微SKIPIF1<0SKIPIF1<0連續(xù)SKIPIF1<0SKIPIF1<0極限存在偏導(dǎo)數(shù)SKIPIF1<0,SKIPIF1<0連續(xù)SKIPIF1<0偏導(dǎo)數(shù)SKIPIF1<0,SKIPIF1<0存在2.判斷二元函數(shù)SKIPIF1<0SKIPIF1<0在原點(diǎn)處是否可微.對(duì)于函數(shù)SKIPIF1<0,先計(jì)算兩個(gè)偏導(dǎo)數(shù):SKIPIF1<0SKIPIF1<0又SKIPIF1<0令SKIPIF1<0,則上式為SKIPIF1<0因而SKIPIF1<0在原點(diǎn)處可微.8.4多元復(fù)合函數(shù)的求導(dǎo)法則1.設(shè)SKIPIF1<0,SKIPIF1<0可微,求SKIPIF1<0.SKIPIF1<08.5隱函數(shù)的求導(dǎo)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0都是由方程SKIPIF1<0所確定的具有連續(xù)偏導(dǎo)數(shù)的函數(shù),證明SKIPIF1<0.對(duì)于方程SKIPIF1<0,如果他滿足隱函數(shù)條件.例如,具有連續(xù)偏導(dǎo)數(shù)且SKIPIF1<0,則由方程SKIPIF1<0可以確定函數(shù)SKIPIF1<0,即SKIPIF1<0是SKIPIF1<0,SKIPIF1<0的函數(shù),而SKIPIF1<0,SKIPIF1<0是自變量,此時(shí)具有偏導(dǎo)數(shù)SKIPIF1<0,SKIPIF1<0同理,SKIPIF1<0,所以SKIPIF1<0.8.6多元函數(shù)的極值及其求法1.設(shè)SKIPIF1<0在點(diǎn)SKIPIF1<0處具有偏導(dǎo)數(shù),若SKIPIF1<0,SKIPIF1<0則函數(shù)SKIPIF1<0在該點(diǎn)取得極值,命題是否正確?不正確,見(jiàn)多元函數(shù)極值存在的充分必要條件.2.如果二元連續(xù)函數(shù)在有界閉區(qū)域內(nèi)有惟一的極小值點(diǎn),且無(wú)極大值,那么該函數(shù)是否在該點(diǎn)取得最小值?不一定,對(duì)于一元函數(shù)來(lái)說(shuō)上述結(jié)論是成立的,但對(duì)于多元函數(shù),情況較為復(fù)雜,一般來(lái)說(shuō)結(jié)論不能簡(jiǎn)單的推廣。例如,二元函數(shù)SKIPIF1<0SKIPIF1<0,SKIPIF1<0由二元函數(shù)極值判別法:SKI

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論