甘肅省鎮(zhèn)原縣第二中學(xué)2022年高一數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第1頁
甘肅省鎮(zhèn)原縣第二中學(xué)2022年高一數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第2頁
甘肅省鎮(zhèn)原縣第二中學(xué)2022年高一數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第3頁
甘肅省鎮(zhèn)原縣第二中學(xué)2022年高一數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第4頁
甘肅省鎮(zhèn)原縣第二中學(xué)2022年高一數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.已知角的終邊經(jīng)過點,則().A. B.C. D.2.若,則的可能值為()A.0 B.0,1C.0,2 D.0,1,23.某食品的保鮮時間(單位:小時)與儲存溫度(單位:)滿足函數(shù)關(guān)系(為自然對數(shù)的底數(shù),為常數(shù))若該食品在的保鮮時間是384小時,在的保鮮時間是24小時,則該食品在的保險時間是()小時A.6 B.12C.18 D.244.設(shè)函數(shù)y=,當(dāng)x>0時,則y()A.有最大值4 B.有最小值4C有最小值8 D.有最大值85.已知函數(shù),若對一切,都成立,則實數(shù)a的取值范圍為()A. B.C. D.6.已知集合,集合,則圖中陰影部分表示的集合為()A. B.C. D.7.如圖,向量,,的起點與終點均在正方形網(wǎng)格的格點上,若,則()A. B.C.2 D.48.函數(shù)的單調(diào)減區(qū)間為()A. B.C. D.9.化簡=A.sin2+cos2 B.sin2-cos2C.cos2-sin2 D.±(cos2-sin2)10.已知集合,則集合中元素的個數(shù)為()A.1 B.2C.3 D.411.命題“,使得”的否定是()A., B.,C., D.,12.下列函數(shù)中,既是奇函數(shù),又是增函數(shù)的是()①;②;③;④A.①② B.①④C.②③ D.③④二、填空題(本大題共4小題,共20分)13.若命題p是命題“”的充分不必要條件,則p可以是___________.(寫出滿足題意的一個即可)14.函數(shù)恒過定點為__________15.已知為角終邊上一點,且,則______16.意大利畫家達·芬奇提出:固定項鏈的兩端,使其在重力的作用下自然下垂,那么項鏈所形成的曲線是什么?這就是著名的“懸鏈線問題”.雙曲余弦函數(shù),就是一種特殊的懸鏈線函數(shù),其函數(shù)表達式為,相應(yīng)的雙曲正弦函數(shù)的表達式為.設(shè)函數(shù),若實數(shù)m滿足不等式,則m的取值范圍為___________.三、解答題(本大題共6小題,共70分)17.如圖,以O(shè)x為始邊作角與,它們的終邊分別與單位圓相交于P,Q兩點,已知點P的坐標(biāo)為(1)求的值;(2)若,求的值18.已知角,且.(1)求的值;(2)求的值.19.(1)已知,求的值.(2)已知,是第四象限角,,,求.20.已知函數(shù)(1)求的最小正周期;(2)當(dāng)時,求的單調(diào)區(qū)間;(3)在(2)的件下,求的最小值,以及取得最小值時相應(yīng)自變量x的取值.21.設(shè)兩個向量,,滿足,.(1)若,求、的夾角;(2)若、夾角為,向量與的夾角為鈍角,求實數(shù)的取值范圍.22.設(shè),關(guān)于的二次不等式的解集為,集合,滿足,求實數(shù)的取值范圍.

參考答案一、選擇題(本大題共12小題,共60分)1、A【解析】根據(jù)三角函數(shù)的概念,,可得結(jié)果.【詳解】因為角終邊經(jīng)過點所以故選:A【點睛】本題主要考查角終邊過一點正切值的計算,屬基礎(chǔ)題.2、C【解析】根據(jù),分,,討論求解.【詳解】因為,當(dāng)時,集合為,不成立;當(dāng)時,集合為,成立;當(dāng)時,則(舍去)或,當(dāng)時,集合為故選:C3、A【解析】先閱讀題意,再結(jié)合指數(shù)運算即可得解.【詳解】解:由題意有,,則,即,則,即該食品在的保險時間是6小時,故選A.【點睛】本題考查了指數(shù)冪的運算,重點考查了解決實際問題的能力,屬基礎(chǔ)題.4、B【解析】由均值不等式可得答案.【詳解】由,當(dāng)且僅當(dāng),即時等號成立.當(dāng)時,函數(shù)的函數(shù)值趨于所以函數(shù)無最大值,有最小值4故選:B5、C【解析】將,成立,轉(zhuǎn)化為,對一切成立,由求解即可.【詳解】解:因為函數(shù),若對一切,都成立,所以,對一切成立,令,所以,故選:C【點睛】方法點睛:恒(能)成立問題的解法:若在區(qū)間D上有最值,則(1)恒成立:;;(2)能成立:;.若能分離常數(shù),即將問題轉(zhuǎn)化為:(或),則(1)恒成立:;;(2)能成立:;.6、B【解析】由陰影部分表示的集合為,然后根據(jù)集合交集的概念即可求解.【詳解】因為陰影部分表示的集合為由于.故選:B.7、D【解析】根據(jù)圖象求得正確答案.【詳解】由圖象可知.故選:D8、A【解析】先求得函數(shù)的定義域,利用二次函數(shù)的性質(zhì)求得函數(shù)的單調(diào)區(qū)間,結(jié)合復(fù)合函數(shù)單調(diào)性的判定方法,即可求解.【詳解】由不等式,即,解得,即函數(shù)的定義域為,令,可得其圖象開口向下,對稱軸的方程為,當(dāng)時,函數(shù)單調(diào)遞增,又由函數(shù)在定義域上為單調(diào)遞減函數(shù),結(jié)合復(fù)合函數(shù)的單調(diào)性的判定方法,可得函數(shù)的單調(diào)減區(qū)間為.故選:A.9、A【解析】利用誘導(dǎo)公式化簡根式內(nèi)的式子,再根據(jù)同角三角函數(shù)關(guān)系式及大小關(guān)系,即可化簡【詳解】根據(jù)誘導(dǎo)公式,化簡得又因為所以選A【點睛】本題考查了三角函數(shù)式的化簡,關(guān)鍵注意符號,屬于中檔題10、D【解析】由題意,集合是由點作為元素構(gòu)成的一個點集,根據(jù),即可得到集合的元素.【詳解】由題意,集合B中元素有(1,1),(1,2),(2,1),(2,2),共4個.故選D【點睛】與集合元素有關(guān)問題的思路:(1)確定集合的元素是什么,即確定這個集合是數(shù)集還是點集(2)看這些元素滿足什么限制條件(3)根據(jù)限制條件列式求參數(shù)的值或確定集合元素的個數(shù),但要注意檢驗集合是否滿足元素的互異性11、B【解析】根據(jù)特稱命題的否定的知識確定正確選項.【詳解】原命題是特稱命題,其否定是全稱命題,注意否定結(jié)論,所以,命題“,使得”的否定是,.故選:B12、D【解析】對每個函【解析】判斷奇偶性及單調(diào)性即可.【詳解】對于①,,奇函數(shù),在和上分別單增,不滿足條件;對于②,,偶函數(shù),不滿足條件;對于③,,奇函數(shù),在R上單增,符合題意;對于④,,奇函數(shù),在R上單增,符合題意;故選:D二、填空題(本大題共4小題,共20分)13、,(答案不唯一)【解析】由充分條件和必要條件的定義求解即可【詳解】因為當(dāng)時,一定成立,而當(dāng)時,可能,可能,所以是的充分不必要條件,故答案為:(答案不唯一)14、【解析】當(dāng)時,,故恒過點睛:函數(shù)圖象過定點問題,主要有指數(shù)函數(shù)過定點,對數(shù)函數(shù)過定點,冪函數(shù)過點,注意整體思維,整體賦值求解15、##【解析】利用三角函數(shù)定義可得:,即可求得:,再利用角的正弦、余弦定義計算得解【詳解】由三角函數(shù)定義可得:,解得:,則,所以,,.故答案為:.16、【解析】先判斷為奇函數(shù),且在R上為增函數(shù),然后將轉(zhuǎn)化為,從而有,進而可求出m的取值范圍【詳解】由題意可知,的定義域為R,因為,所以為奇函數(shù).因為,且在R上為減函數(shù),所以由復(fù)合函數(shù)的單調(diào)性可知在R上為增函數(shù).又,所以,所以,解得.故答案為:.三、解答題(本大題共6小題,共70分)17、(1)(2)【解析】(1)由三角函數(shù)的定義首先求得的值,然后結(jié)合二倍角公式和同角三角函數(shù)基本關(guān)系化簡求解三角函數(shù)式的值即可;(2)由題意首先求得的關(guān)系,然后結(jié)合誘導(dǎo)公式和兩角和差正余弦公式即可求得三角函數(shù)式的值.【詳解】(1)由三角函數(shù)定義得,,∴原式(2)∵,且,∴,,∴,∴【點睛】本題主要考查三角函數(shù)的定義,二倍角公式及其應(yīng)用,兩角和差正余弦公式的應(yīng)用等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.18、(1)(2)【解析】(1)依題意可得,再根據(jù)同角三角函數(shù)的基本關(guān)系將弦化切,即可得到的方程,解得,再根據(jù)的范圍求出;(2)根據(jù)同角三角函數(shù)的基本關(guān)系將弦化切,再代入計算可得;【小問1詳解】解:由,有,有,整理為,有,解得或.又由,有,可得;【小問2詳解】解:.19、(1)(2)【解析】(1)由正余弦的齊次式化為正切即可求值;(2)由同角的三角函數(shù)基本關(guān)系及兩角和的正弦公式求解.【詳解】(1).(2),是第四象限角,,,,,20、(1)(2)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(3)當(dāng)時,的最小值為0【解析】(1)根據(jù)周期公式計算即可.(2)求出單調(diào)區(qū)間,然后與所給的范圍取交集即可.(3)根據(jù)(2)的結(jié)論,對與進行比較即可.【小問1詳解】,,故的最小正周期為.【小問2詳解】先求出增區(qū)間,即:令解得所以在區(qū)間上,當(dāng)時,函數(shù)單調(diào)遞增,當(dāng)時,函數(shù)單調(diào)遞減;所以的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為【小問3詳解】由(2)所得到的單調(diào)性可得,,所以在時取得最小值0.21、(1);(2)且.【解析】(1)根據(jù)數(shù)量積運算以及結(jié)果,結(jié)合模長,即可求得,再根據(jù)數(shù)量積求得夾角;(2)根據(jù)夾角為鈍角則數(shù)量積為負數(shù),求得的范圍;再排除向量與不為反向向量對應(yīng)參數(shù)的范圍,則問題得解.【詳解】(1)因為,所以,即,又,,所以,所以,又,所以向量、的夾角是.(2)因為向量與的夾角為鈍角,所以,且向量與不反向共線,即,又、夾角為,所以,所以,解得,又向量與不反向共線,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論