版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1Chapter5:
RiskPooling&Forecasting1Dr.YANGRuina1Chapter5:RiskPooling&For12AgendaRiskPoolingCase1:ACMEForecasting2AgendaRiskPooling23RiskPoolingDemandvariabilityisreducedifoneaggregatesdemandacrosslocations.Morelikelythathighdemandfromonecustomerwillbeoffsetbylowdemandfromanother.Reductioninvariabilityallowsadecreaseinsafetystockandthereforereducesaverageinventory.3RiskPoolingDemandvariabilit3供應(yīng)鏈管理(英文課件)Chapter5-Risk-Pooling-and-Forecasting4供應(yīng)鏈管理(英文課件)Chapter5-Risk-Pooling-and-Forecasting56AcmeRiskPoolingCaseElectronicequipmentmanufactureranddistributor2warehousesfordistributioninMassachusettsandNewJersey(partitioningthenortheastmarketintotworegions)Customers(retailers)receivingitemsfromwarehouses(eachretailerisassignedawarehouse)WarehousesreceivematerialfromChicagoCurrentrule:97%servicelevelEachwarehouseoperatetosatisfy97%ofdemand(3%probabilityofstock-out)6AcmeRiskPoolingCaseElectro67Replacethe2warehouseswithasinglewarehouse(locatedsomesuitableplace)andtrytoimplementthesameservicelevel97%NewIdea7Replacethe2warehouseswith78HistoricalDataAslow-movingproduct8HistoricalDataAslow-moving89SummaryofHistoricalData9SummaryofHistoricalData910InventoryLevels10InventoryLevels1011SavingsinInventoryAverageinventoryforProductA:AtNJwarehouseisabout88unitsAtMAwarehouseisabout91unitsInthecentralizedwarehouseisabout132unitsAverageinventoryreducedbyabout36percentAverageinventoryforProductB:AtNJwarehouseisabout15unitsAtMAwarehouseisabout14unitsInthecentralizedwarehouseisabout20unitsAverageinventoryreducedbyabout43percent11SavingsinInventoryAverage11DiscussionQuestionAnalyzethestrengthsandweaknessesofthecurrentdistributionsystemandthenewdistributionsystem.(e.g.deliveryleadtime,totalinventoryinvestment)DiscussionQuestionAnalyzethe1213Centralizinginventoryreducesbothsafetystockandaverageinventoryinthesystem.
--
Reallocationofitemsfromonemarkettoanothereasilyaccomplishedincentralizedsystems.Notpossibletodoindecentralizedsystemswheretheyservedifferentmarkets.CriticalPoints13CriticalPoints1314Thehigherthecoefficientofvariation,thegreaterthebenefitfromriskpooling.
--Thehigherthevariability,thehigherthesafetystockskeptbythewarehouses.Thevariabilityofthedemandaggregatedbythesinglewarehouseislower.
CriticalPoints14Thehigherthecoefficiento1415Thebenefitsfromriskpoolingdependonthebehaviorofthedemandfromonemarketrelativetodemandfromanother.
--RiskpoolingbenefitsarehigherinsituationswheredemandsobservedatwarehousesarenegativelycorrelatedCriticalPoints15Thebenefitsfromriskpooli15供應(yīng)鏈管理(英文課件)Chapter5-Risk-Pooling-and-Forecasting1617Centralizedvs.DecentralizedSystemsSafetystock:lowerwithcentralizationServicelevel:higherservicelevelforthesameinventoryinvestmentwithcentralizationOverheadcosts:higherindecentralizedsystemCustomerleadtime:responsetimeslowerinthedecentralizedsystemTransportationcosts:notclear.Consideroutboundandinboundcosts.17Centralizedvs.Decentraliz1718ContentsofForecastingIntroductionForecastEvaluationSubjectiveMethodsObjectiveMethods--CausalModels--TimeSeriesModelsSummary
18ContentsofForecastingIntro1819LearningObjectivesofForecastingUnderstandcommonlyusedforecastingtechniques
LearntoevaluateforecastsLearntochooseappropriateforecastingtechniques19LearningObjectivesofForec1920IntroductiontoForecasting20IntroductiontoForecasting2021IntroductiontoForecasting21IntroductiontoForecasting2122longtermDemandfulfillmentPurchasingProductioncontrolAggregateplanningDemandforecastingInventorymanagementOperationsschedulingDistributionplanningTransportplanningFulfillmentimplementationDistributionnetworkdesignSupplyChainManagement
ProductdevelopmentmediumtermshorttermDistributionFacilitylocationand
layoutManufacturingSupplynet-
workdesignPartner
selectionProduct
portifolioDerivative
product
developmentAdaptionsCurrent
product
supportMaterials
orderingSupplycontract
designDemandforecastingisthestartingpointofallplanningandcontrol!22longDemandPurchasingProducti2223CharacteristicsofForecastTheforecastisalwayswrongItisdifficulttomatchsupplyanddemandThelongertheforecasthorizon,theworsetheforecast(Timehorizon)ItisevenmoredifficultifoneneedstopredictcustomerdemandforalongperiodoftimeAggregateforecastsaremoreaccurateChoosingappropriateaggregationlevels,timehorizons,andforecastingtechniquesiscrucial23CharacteristicsofForecast2324AGoodForecastisMorethanaSingleNumber24AGoodForecastisMorethan2425Long-termForecastsareAlwaysWrong25Long-termForecastsareAlwa2526WhatMakesaGoodForecast?26WhatMakesaGoodForecast?2627TWOFORECASTS1617181920Aug-02Sep-02Oct-02Nov-02Dec-02SalesWhichforecastisbetter?Howcanweevaluatetheforecastingperformance?Forecastquality27TWOFORECASTS1617181920Aug-02728ForecastErrors28ForecastErrors2829EvaluationofForecastAccuracy29EvaluationofForecastAccur2930MeasuringForecastAccuracy—Forecast130MeasuringForecastAccuracy—3031MeasuringForecastAccuracy—Forecast231MeasuringForecastAccuracy—3132EvaluationsofTwoForecasts32EvaluationsofTwoForecasts3233BiasinForecast33BiasinForecast3334BiasinForecast34BiasinForecast3435ReasonsforBiasinForecast
Lineartrendornon-lineartrendSeasonalityExternalfactors,suchaspromotionandadvertisementIfrelevantelementsarenotconsideredintheforecast,theforecastcanbecomebiased.Theseelementscaninclude:35ReasonsforBiasinForecast3536QualitativeMethodsQualitativeMethodsSalesForceCompositePanelofExpertsMarketResearchDelphiMethodApplicationUsedtogenerateforecastsifhistoricaldataarenotavailable(e.g.,introductionofnewproduct)Usedtomodifyforecastsgeneratedbyotherapproaches(e.g.,consideringinformationnotincludedinquantitativemethods)36QualitativeMethodsQualitati3637SalesForceEstimate
RationaleSalesforceisclosetocustomerandhasgoodinformationonfuturedemandsApproach
Membersofsalesforceperiodicallyreporttheirestimates.TheseestimatesarethenaggregatedtogeneratetheoverallforecastMainadvantagesSalesforceknowscustomerwellSalesterritoriesaretypicallydividedbydistrict/region.Salesforecastscanbebrokendowncorrespondingly37SalesForceEstimateRationa3738SalesForceEstimateBiasofsalesforce
-Mighthaveincentivestooverestimatesalesorunderestimatesales
-MightnaturallybeoptimisticorpessimisticSalesforcedoesnotalwayshaveallinformationnecessarytogenerateforecast
-Featuresofproductslaunchedinfuture
-PreferencesofcustomersinnewmarketsegmentsTypicalapplicationMaindrawbacksShort-termandmedium-termdemandforecasting38SalesForceEstimateTypical3839ExecutiveOpinionRationaleUpper-levelmanagementhasbestinformationonlatestproductdevelopmentsandfutureproductlaunchesApproachSmallgroupofupper-levelmanagerscollectivelydevelopforecastsCombineknowledgeandexpertisefromvariousfunctionalareasPeoplewhohavebestinformationonfuturedevelopmentsgeneratetheforecastsMainadvantages39ExecutiveOpinionRationaleAp3940ExecutiveOpinionExpensiveNoindividualresponsibilityforforecastqualityRiskthatfewpeopledominatethegroup
TypicalapplicationsMaindrawbacksShort-termandmedium-termdemandforecasting40ExecutiveOpinionTypicalapp4041MarketResearchRationaleUltimately,consumersdrivedemandApproachDetermineconsumerinterestsbycreatingandtestinghypothesesthroughdata-gatheringsurveys:
DesignquestionnaireSelectcustomersample
Conductsurvey(e.g.,telephone,mail,orinterview)
Analyzeinformationandgenerateforecast41MarketResearchRationaleAppr4142MarketResearchExpensiveRequireconsiderableknowledgeandskillsSometimesvaliditynotguaranteedduetolowresponserates:Formailedquestionnairesresponserateoften<30%TypicalapplicationSystematicandfact-basedapproachExcellentaccuracyforshort-termforecastsGoodaccuracyformedium-termforecastsMainadvantagesMaindrawbacksShort-termandmedium-termdemandforecasting42MarketResearchTypicalappli4243DelphiMethodRationaleAnonymouswrittenresponsesencouragehonestyandavoidthatagroupofexpertsaredominatedbyonlyafewmembersApproachCoordinator
sendsinitial
questionnaireEachexpertwritesresponse(anonymous)CoordinatorperformsanalysisCoordinator
sendsupdatedquestionnaireConsensusreached?CoordinatorsummarizesforecastNoYes43DelphiMethodRationaleApproa4344DelphiMethodSlowprocessExpertsarenotaccountablefortheirresponsesLittleevidencethatreliablelong-termforecastscanbegeneratedwithDelphiorothermethods
Long-termforecastingTechnologyforecastingGenerateconsensusCanforecastlong-termtrendwithoutavailabilityofhistoricaldataMainadvantagesMaindrawbacksTypicalapplication44DelphiMethodGenerateconse4445ObjectiveForecastingMethods45ObjectiveForecastingMethod4546CausalModelsCausalModelsLinearRegressionNon-linearRegressionApplicationUsedtoforecasttheperformance(demand,profit,etc.)ofabusinessinvestmentbasedontheobserveddataofexistingandsimilarbusinessactivities46CausalModelsCausalApplicati4647ASimpleExample47ASimpleExample4748LinearRegression:ObjectiveObjectiveIdeaFindalinearfunctionthatrepresentsthepredictedvariableyasafunctionofpredictivevariablesx1,x2,…,xmandbestfitstheobserveddata48LinearRegression:Objective4849494950505051515152525253EXAMPLE:m=1(1)a=1,796x2,710–132x35,29012x1,796–132x132
=50.6b=12x35,290–132x2,71012x1,796–132x132
=15.9CoefficientsObserveddataandanalysis53EXAMPLE:m=1(1)a=1,7965354EXAMPLE:m=1(2)PopulationDemandy(x)=a+bx=50.6+15.9xQuestion:Whatdemandwouldweexpectfrominvestinginabusinesswithanearbypopulation10thousand?Answer:y(10)=54EXAMPLE:m=1(2)Population54555555565656575757585858595959606060616161626262636363646464656565666666676767686868696969供應(yīng)鏈管理(英文課件)Chapter5-Risk-Pooling-and-Forecasting7071717172727273737374747475757576767677777778787879797980808081818182828283838384848485858586868687878788888889898990909091919192929293OtherFactorsofForecasting93OtherFactorsofForecasting9394TheMostAppropriateTechniquePurposeoftheforecastHowwilltheforecastbeused?Dynamicsofsystemforwhichforecastwillbemade.Howaccurateisthepasthistoryinpredictingthefuture?94TheMostAppropriateTechniq9495DeterminetheMostAppropriateTechnique95DeterminetheMostAppropria9596SummaryDemandplanning/forecastingisthestartingpointofallplanningTheperformanceofforecastingapproachcanbeevaluatedbasedonvariousmetrics
-MAD
-MSE
-MAPEVariousforecastingapproachesexist.Whichoneisappropriatedependsonthesituation.
-
Qualitativemethods,
-Causalmodels,or
-Time-seriesmodels96SummaryDemandplanning/forec9697Chapter5:
RiskPooling&Forecasting97Dr.YANGRuina1Chapter5:RiskPooling&ingDemandvariabilit99供應(yīng)鏈管理(英文課件)Chapter5-Risk-Pooling-and-Forecasting100供應(yīng)鏈管理(英文課件)Chapter5-Risk-Pooling-and-Forecasting101102AcmeRiskPoolingCaseElectronicequipmentmanufactureranddistributor2warehousesfordistributioninMassachusettsandNewJersey(partitioningthenortheastmarketintotworegions)Customers(retailers)receivingitemsfromwarehouses(eachretailerisassignedawarehouse)WarehousesreceivematerialfromChicagoCurrentrule:97%servicelevelEachwarehouseoperatetosatisfy97%ofdemand(3%probabilityofstock-out)6AcmeRiskPoolingCaseElectro102103Replacethe2warehouseswithasinglewarehouse(locatedsomesuitableplace)andtrytoimplementthesameservicelevel97%NewIdea7Replacethe2warehouseswith103104HistoricalDataAslow-movingproduct8HistoricalDataAslow-moving104105SummaryofHistoricalData9SummaryofHistoricalData105106InventoryLevels10InventoryLevels106107SavingsinInventoryAverageinventoryforProductA:AtNJwarehouseisabout88unitsAtMAwarehouseisabout91unitsInthecentralizedwarehouseisabout132unitsAverageinventoryreducedbyabout36percentAverageinventoryforProductB:AtNJwarehouseisabout15unitsAtMAwarehouseisabout14unitsInthecentralizedwarehouseisabout20unitsAverageinventoryreducedbyabout43percent11SavingsinInventoryAverage107DiscussionQuestionAnalyzethestrengthsandweaknessesofthecurrentdistributionsystemandthenewdistributionsystem.(e.g.deliveryleadtime,totalinventoryinvestment)DiscussionQuestionAnalyzethe108109Centralizinginventoryreducesbothsafetystockandaverageinventoryinthesystem.
--
Reallocationofitemsfromonemarkettoanothereasilyaccomplishedincentralizedsystems.Notpossibletodoindecentralizedsystemswheretheyservedifferentmarkets.CriticalPoints13CriticalPoints109110Thehigherthecoefficientofvariation,thegreaterthebenefitfromriskpooling.
--Thehigherthevariability,thehigherthesafetystockskeptbythewarehouses.Thevariabilityofthedemandaggregatedbythesinglewarehouseislower.
CriticalPoints14Thehigherthecoefficiento110111Thebenefitsfromriskpoolingdependonthebehaviorofthedemandfromonemarketrelativetodemandfromanother.
--RiskpoolingbenefitsarehigherinsituationswheredemandsobservedatwarehousesarenegativelycorrelatedCriticalPoints15Thebenefitsfromriskpooli111供應(yīng)鏈管理(英文課件)Chapter5-Risk-Pooling-and-Forecasting112113Centralizedvs.DecentralizedSystemsSafetystock:lowerwithcentralizationServicelevel:higherservicelevelforthesameinventoryinvestmentwithcentralizationOverheadcosts:higherindecentralizedsystemCustomerleadtime:responsetimeslowerinthedecentralizedsystemTransportationcosts:notclear.Consideroutboundandinboundcosts.17Centralizedvs.Decentraliz113114ContentsofForecastingIntroductionForecastEvaluationSubjectiveMethodsObjectiveMethods--CausalModels--TimeSeriesModelsSummary
18ContentsofForecastingIntro114115LearningObjectivesofForecastingUnderstandcommonlyusedforecastingtechniques
LearntoevaluateforecastsLearntochooseappropriateforecastingtechniques19LearningObjectivesofForec115116IntroductiontoForecasting20IntroductiontoForecasting116117IntroductiontoForecasting21IntroductiontoForecasting117118longtermDemandfulfillmentPurchasingProductioncontrolAggregateplanningDemandforecastingInventorymanagementOperationsschedulingDistributionplanningTransportplanningFulfillmentimplementationDistributionnetworkdesignSupplyChainManagement
ProductdevelopmentmediumtermshorttermDistributionFacilitylocationand
layoutManufacturingSupplynet-
workdesignPartner
selectionProduct
portifolioDerivative
product
developmentAdaptionsCurrent
product
supportMaterials
orderingSupplycontract
designDemandforecastingisthestartingpointofallplanningandcontrol!22longDemandPurchasingProducti118119CharacteristicsofForecastTheforecastisalwayswrongItisdifficulttomatchsupplyanddemandThelongertheforecasthorizon,theworsetheforecast(Timehorizon)ItisevenmoredifficultifoneneedstopredictcustomerdemandforalongperiodoftimeAggregateforecastsaremoreaccurateChoosingappropriateaggregationlevels,timehorizons,andforecastingtechniquesiscrucial23CharacteristicsofForecast119120AGoodForecastisMorethanaSingleNumber24AGoodForecastisMorethan120121Long-termForecastsareAlwaysWrong25Long-termForecastsareAlwa121122WhatMakesaGoodForecast?26WhatMakesaGoodForecast?122123TWOFORECASTS1617181920Aug-02Sep-02Oct-02Nov-02Dec-02SalesWhichforecastisbetter?Howcanweevaluatetheforecastingperformance?Forecastquality27TWOFORECASTS1617181920Aug-0123124ForecastErrors28ForecastErrors124125EvaluationofForecastAccuracy29EvaluationofForecastAccur125126MeasuringForecastAccuracy—Forecast130MeasuringForecastAccuracy—126127MeasuringForecastAccuracy—Forecast231MeasuringForecastAccuracy—127128EvaluationsofTwoForecasts32EvaluationsofTwoForecasts128129BiasinForecast33BiasinForecast129130BiasinForecast34BiasinForecast130131ReasonsforBiasinForecast
Lineartrendornon-lineartrendSeasonalityExternalfactors,suchaspromotionandadvertisementIfrelevantelementsarenotconsideredintheforecast,theforecastcanbecomebiased.Theseelementscaninclude:35ReasonsforBiasinForecast131132QualitativeMethodsQualitativeMethodsSalesForceCompositePanelofExpertsMarketResearchDelphiMethodApplicationUsedtogenerateforecastsifhistoricaldataarenotavailable(e.g.,introductionofnewproduct)Usedtomodifyforecastsgeneratedbyotherapproaches(e.g.,consideringinformationnotincludedinquantitativemethods)36QualitativeMethodsQualitati132133SalesForceEstimate
RationaleSalesforceisclosetocustomerandhasgoodinformationonfuturedemandsApproach
Membersofsalesforceperiodicallyreporttheirestimates.TheseestimatesarethenaggregatedtogeneratetheoverallforecastMainadvantagesSalesforceknowscustomerwellSalesterritoriesaretypicallydividedbydistrict/region.Salesforecastscanbebrokendowncorrespondingly37SalesForceEstimateRationa133134SalesForceEstimateBiasofsalesforce
-Mighthaveincentivestooverestimatesalesorunderestimatesales
-MightnaturallybeoptimisticorpessimisticSalesforcedoesnotalwayshaveallinformationnecessarytogenerateforecast
-Featuresofproductslaunchedinfuture
-PreferencesofcustomersinnewmarketsegmentsTypicalapplicationMaindrawbacksShort-termandmedium-termdemandforecasting38SalesForceEstimateTypical134135ExecutiveOpinionRationaleUpper-levelmanagementhasbestinformationonlatestproductdevelopmentsandfutureproductlaunchesApproachSmallgroupofupper-levelmanagerscollectivelydevelopforecastsCombineknowledgeandexpertisefromvariousfunctionalareasPeoplewhohavebestinformationonfuturedevelopmentsgeneratetheforecastsMainadvantages39ExecutiveOpinionRationaleAp135136ExecutiveOpinionExpensiveNoindividualresponsibilityforforecastqualityRiskthatfewpeopledominatethegroup
TypicalapplicationsMaindrawbacksShort-termandmedium-termdemandforecasting40ExecutiveOpinionTypicalapp136137MarketResearchRationaleUltimately,consumersdrivedemandApproachDetermineconsumerinterestsbycreatingandtestinghypothesesthroughdata-gatheringsurveys:
DesignquestionnaireSelectcustomersample
Conductsurvey(e.g.,telephone,mail,orinterview)
Analyzeinformationandgenerateforecast41MarketResearchRationaleAppr137138MarketResearchExpensiveRequireconsiderableknowledgeandskillsSometimesvaliditynotguaranteedduetolowresponserates:Formailedquestionnairesresponserateoften<30%TypicalapplicationSystematicandfact-basedapproachExcellentaccuracyforshort-termforecastsGoodaccuracyformedium-termforecastsMainadvantagesMaindrawbacksShort-termandmedium-termdemandforecasting42MarketResearchTypicalappli138139DelphiMethodRationaleAnonymouswrittenresponsesencouragehonestyandavoidthatagroupofexpertsaredominatedbyonlyafewmembersApproachCoordinator
sendsinitial
questionnaireEachexpertwritesresponse(anonymous)CoordinatorperformsanalysisCoordinator
sendsupdatedquestionnaireConsensusreached?CoordinatorsummarizesforecastNoYes43DelphiMethodRationaleApproa139140DelphiMethodSlowprocessExpertsarenotaccountablefortheirresponsesLittleevidencethatreliablelong-termforecastscanbegeneratedwithDelphiorothermethods
Long-termforecastingTechnologyforecastingGenerateconsensusCanforecastlong-termtrendwithoutavailabilityofhistoricaldataMainadvantagesMaindrawbacksTypicalapplication44Delphi
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)建筑施工安全生產(chǎn)管理制度匯編
- 中國(guó)石化安全風(fēng)險(xiǎn)評(píng)估指導(dǎo)意見(jiàn)
- 部編版八年級(jí)《道德與法治》上冊(cè)同步練習(xí)(全冊(cè),含答案)
- 2024年稅務(wù)師題庫(kù)附完整答案【典優(yōu)】
- 2024年甘孜職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)可打印
- 農(nóng)村水田合同(2篇)
- 2024年度天津市公共營(yíng)養(yǎng)師之二級(jí)營(yíng)養(yǎng)師全真模擬考試試卷A卷含答案
- 2024年度天津市公共營(yíng)養(yǎng)師之三級(jí)營(yíng)養(yǎng)師押題練習(xí)試題B卷含答案
- 2024年度四川省公共營(yíng)養(yǎng)師之三級(jí)營(yíng)養(yǎng)師通關(guān)題庫(kù)(附答案)
- 2024年度四川省公共營(yíng)養(yǎng)師之二級(jí)營(yíng)養(yǎng)師能力測(cè)試試卷A卷附答案
- 2024年加油站的年度工作總結(jié)范文(2篇)
- 甲醇制氫生產(chǎn)裝置計(jì)算書(shū)
- T-JSREA 32-2024 電化學(xué)儲(chǔ)能電站消防驗(yàn)收規(guī)范
- 2025年上半年江蘇省常州市文廣旅局下屬事業(yè)單位招聘4人重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解
- 2023-2024學(xué)年福建省泉州市石獅市三年級(jí)(上)期末數(shù)學(xué)試卷
- 新時(shí)代高校馬克思主義學(xué)院內(nèi)涵式發(fā)展的現(xiàn)狀和現(xiàn)實(shí)進(jìn)路
- 銅工崗位安全操作規(guī)程(2篇)
- 擦玻璃安全責(zé)任合同協(xié)議書(shū)范本
- 【MOOC】隧道工程-中南大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 紅色經(jīng)典影片與近現(xiàn)代中國(guó)發(fā)展學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 劇作策劃與管理智慧樹(shù)知到期末考試答案2024年
評(píng)論
0/150
提交評(píng)論