版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運算正確的是()A.5ab﹣ab=4 B.a6÷a2=a4C. D.(a2b)3=a5b32.有下列四個命題:①相等的角是對頂角;②兩條直線被第三條直線所截,同位角相等;③同一種正五邊形一定能進行平面鑲嵌;④垂直于同一條直線的兩條直線互相垂直.其中假命題的個數(shù)有()A.1個B.2個C.3個D.4個3.《孫子算經》是中國傳統(tǒng)數(shù)學的重要著作,其中有一道題,原文是:“今有木,不知長短,引繩度之,余繩四尺五寸;屈繩量之,不足一尺.木長幾何?”意思是:用一根繩子去量一根木頭的長、繩子還剩余4.5尺;將繩子對折再量木頭,則木頭還剩余1尺,問木頭長多少尺?可設木頭長為x尺,繩子長為y尺,則所列方程組正確的是()A. B. C. D.4.如圖,在Rt△ABC中,∠B=90o,AB=6,BC=8,點D在BC上,以AC為對角線的所有□ADCE中,DE的最小值是(
)A.4 B.6 C.8 D.105.cos60°的值等于()A.1 B. C. D.6.圖中三視圖對應的正三棱柱是()A. B. C. D.7.已知兩點都在反比例函數(shù)圖象上,當時,,則的取值范圍是()A. B. C. D.8.如圖,AB是⊙O的直徑,C,D是⊙O上位于AB異側的兩點.下列四個角中,一定與∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD9.如圖,BC平分∠ABE,AB∥CD,E是CD上一點,若∠C=35°,則∠BED的度數(shù)為()A.70° B.65° C.62° D.60°10.的相反數(shù)是A. B.2 C. D.二、填空題(共7小題,每小題3分,滿分21分)11.在Rt△ABC中,∠C=90°,AB=6,cosB=,則BC的長為_____.12.如圖,在△ABC中,CA=CB,∠ACB=90°,AB=2,點D為AB的中點,以點D為圓心作圓心角為90°的扇形DEF,點C恰在弧EF上,則圖中陰影部分的面積為__________.13.如圖,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分線MN交AC于D,連接DB,若tan∠CBD=,則BD=_____.14.已知關于x的二次函數(shù)y=x2-2x-2,當a≤x≤a+2時,函數(shù)有最大值1,則a的值為________.15.如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,點E、F分別在菱形的邊BC、CD上滑動,且E、F不與B、C、D重合.當點E、F在BC、CD上滑動時,則△CEF的面積最大值是____.16.2017我市社會消費品零售總額,科學記數(shù)法表示為_____.17.如圖為二次函數(shù)圖象的一部分,其對稱軸為直線.若其與x軸一交點為A(3,0)則由圖象可知,不等式的解集是_______.三、解答題(共7小題,滿分69分)18.(10分)如圖,C是⊙O上一點,點P在直徑AB的延長線上,⊙O的半徑為3,PB=2,PC=1.(1)求證:PC是⊙O的切線.(2)求tan∠CAB的值.19.(5分)在平面直角坐標系xOy中,點M的坐標為,點N的坐標為,且,,我們規(guī)定:如果存在點P,使是以線段MN為直角邊的等腰直角三角形,那么稱點P為點M、N的“和諧點”.(1)已知點A的坐標為,①若點B的坐標為,在直線AB的上方,存在點A,B的“和諧點”C,直接寫出點C的坐標;②點C在直線x=5上,且點C為點A,B的“和諧點”,求直線AC的表達式.(2)⊙O的半徑為r,點為點、的“和諧點”,且DE=2,若使得與⊙O有交點,畫出示意圖直接寫出半徑r的取值范圍.20.(8分)M中學為創(chuàng)建園林學校,購買了若干桂花樹苗,計劃把迎賓大道的一側全部栽上桂花樹(兩端必須各栽一棵),并且每兩棵樹的間隔相等,如果每隔5米栽1棵,則樹苗缺11棵;如果每隔6米栽1棵,則樹苗正好用完,求購買了桂花樹苗多少棵?21.(10分)如圖,平面直角坐標系中,將含30°的三角尺的直角頂點C落在第二象限.其斜邊兩端點A、B分別落在x軸、y軸上且AB=12cm(1)若OB=6cm.①求點C的坐標;②若點A向右滑動的距離與點B向上滑動的距離相等,求滑動的距離;(2)點C與點O的距離的最大值是多少cm.22.(10分)某農場要建一個長方形ABCD的養(yǎng)雞場,雞場的一邊靠墻,(墻長25m)另外三邊用木欄圍成,木欄長40m.(1)若養(yǎng)雞場面積為168m2,求雞場垂直于墻的一邊AB的長.(2)請問應怎樣圍才能使養(yǎng)雞場面積最大?最大的面積是多少?23.(12分)某同學報名參加學校秋季運動會,有以下5個項目可供選擇:徑賽項目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項目:跳遠,跳高(分別用T1、T2表示).該同學從5個項目中任選一個,恰好是田賽項目的概率P為;該同學從5個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率P1,利用列表法或樹狀圖加以說明;該同學從5個項目中任選兩個,則兩個項目都是徑賽項目的概率P2為.24.(14分)某校為了解學生對籃球、足球、排球、羽毛球、乒乓球這五種球類運動的喜愛情況,隨機抽取一部分學生進行問卷調查,統(tǒng)計整理并繪制了以下兩幅不完整的統(tǒng)計圖:請根據(jù)以上統(tǒng)計圖提供的信息,解答下列問題:(1)共抽取名學生進行問卷調查;(2)補全條形統(tǒng)計圖,求出扇形統(tǒng)計圖中“足球”所對應的圓心角的度數(shù);(3)該校共有3000名學生,請估計全校學生喜歡足球運動的人數(shù).(4)甲乙兩名學生各選一項球類運動,請求出甲乙兩人選同一項球類運動的概率.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
由整數(shù)指數(shù)冪和分式的運算的法則計算可得答案.【詳解】A項,根據(jù)單項式的減法法則可得:5ab-ab=4ab,故A項錯誤;B項,根據(jù)“同底數(shù)冪相除,底數(shù)不變,指數(shù)相減”可得:a6÷a2=a4,故B項正確;C項,根據(jù)分式的加法法則可得:,故C項錯誤;D項,根據(jù)“積的乘方等于乘方的積”可得:,故D項錯誤;故本題正確答案為B.【點睛】冪的運算法則:(1)同底數(shù)冪的乘法:(m、n都是正整數(shù))(2)冪的乘方:(m、n都是正整數(shù))(3)積的乘方:(n是正整數(shù))(4)同底數(shù)冪的除法:(a≠0,m、n都是正整數(shù),且m>n)(5)零次冪:(a≠0)(6)負整數(shù)次冪:(a≠0,p是正整數(shù)).2、D【解析】
根據(jù)對頂角的定義,平行線的性質以及正五邊形的內角及鑲嵌的知識,逐一判斷.【詳解】解:①對頂角有位置及大小關系的要求,相等的角不一定是對頂角,故為假命題;②只有當兩條平行直線被第三條直線所截,同位角相等,故為假命題;③正五邊形的內角和為540°,則其內角為108°,而360°并不是108°的整數(shù)倍,不能進行平面鑲嵌,故為假命題;④在同一平面內,垂直于同一條直線的兩條直線平行,故為假命題.故選:D.【點睛】本題考查了命題與證明.對頂角,垂線,同位角,鑲嵌的相關概念.關鍵是熟悉這些概念,正確判斷.3、A【解析】
根據(jù)“用一根繩子去量一根木頭的長、繩子還剩余4.5尺;將繩子對折再量木頭,則木頭還剩余1尺”可以列出相應的方程組,本題得以解決.【詳解】由題意可得,,故選A.【點睛】本題考查由實際問題抽象出二元一次方程組,解答本題的關鍵是明確題意,列出相應的方程組.4、B【解析】
平行四邊形ADCE的對角線的交點是AC的中點O,當OD⊥BC時,OD最小,即DE最小,根據(jù)三角形中位線定理即可求解.【詳解】平行四邊形ADCE的對角線的交點是AC的中點O,當OD⊥BC時,OD最小,即DE最小?!逴D⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位線,∴OD=AB=3,∴DE=2OD=6.故選:B.【點睛】本題考查了平行四邊形的性質,解題的關鍵是利用三角形中位線定理進行求解.5、A【解析】
根據(jù)特殊角的三角函數(shù)值直接得出結果.【詳解】解:cos60°=故選A.【點睛】識記特殊角的三角函數(shù)值是解題的關鍵.6、A【解析】
由俯視圖得到正三棱柱兩個底面在豎直方向,由主視圖得到有一條側棱在正前方,從而求解【詳解】解:由俯視圖得到正三棱柱兩個底面在豎直方向,由主視圖得到有一條側棱在正前方,于是可判定A選項正確.故選A.【點睛】本題考查由三視圖判斷幾何體,掌握幾何體的三視圖是本題的解題關鍵.7、B【解析】
根據(jù)反比例函數(shù)的性質判斷即可.【詳解】解:∵當x1<x2<0時,y1<y2,
∴在每個象限y隨x的增大而增大,
∴k<0,
故選:B.【點睛】本題考查了反比例函數(shù)的性質,解題的關鍵是熟練掌握反比例函數(shù)的性質.8、D【解析】
∵∠ACD對的弧是,對的另一個圓周角是∠ABD,∴∠ABD=∠ACD(同圓中,同弧所對的圓周角相等),又∵AB為直徑,∴∠ADB=90°,∴∠ABD+∠BAD=90°,即∠ACD+∠BAD=90°,∴與∠ACD互余的角是∠BAD.故選D.9、A【解析】
由AB∥CD,根據(jù)兩直線平行,內錯角相等,即可求得∠ABC的度數(shù),又由BC平分∠ABE,即可求得∠ABE的度數(shù),繼而求得答案.【詳解】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故選:A.【點睛】本題考查了平行線的性質,解題的關鍵是掌握平行線的性質進行解答.10、B【解析】
根據(jù)相反數(shù)的性質可得結果.【詳解】因為-2+2=0,所以﹣2的相反數(shù)是2,故選B.【點睛】本題考查求相反數(shù),熟記相反數(shù)的性質是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、4【解析】
根據(jù)銳角的余弦值等于鄰邊比對邊列式求解即可.【詳解】∵∠C=90°,AB=6,∴,∴BC=4.【點睛】本題考查了勾股定理和銳角三角函數(shù)的概念,熟練掌握銳角三角函數(shù)的定義是解答本題的關鍵.在Rt△ABC中,,,.12、.【解析】
連接CD,根據(jù)題意可得△DCE≌△BDF,陰影部分的面積等于扇形的面積減去△BCD的面積.【詳解】解:連接CD,
作DM⊥BC,DN⊥AC.
∵CA=CB,∠ACB=90°,點D為AB的中點,
∴DC=AB=1,四邊形DMCN是正方形,DM=.
則扇形FDE的面積是:.
∵CA=CB,∠ACB=90°,點D為AB的中點,
∴CD平分∠BCA,
又∵DM⊥BC,DN⊥AC,
∴DM=DN,
∵∠GDH=∠MDN=90°,
∴∠GDM=∠HDN,
則在△DMG和△DNH中,,
∴△DMG≌△DNH(AAS),
∴S四邊形DGCH=S四邊形DMCN=.
則陰影部分的面積是:.故答案為:.【點睛】本題考查了三角形的全等的判定與扇形的面積的計算的綜合題,正確證明△DMG≌△DNH,得到S四邊形DGCH=S四邊形DMCN是關鍵.13、2.【解析】
由tan∠CBD==設CD=3a、BC=4a,據(jù)此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.【詳解】解:在Rt△BCD中,∵tan∠CBD==,
∴設CD=3a、BC=4a,
則BD=AD=5a,
∴AC=AD+CD=5a+3a=8a,
在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,
解得:a=或a=-(舍),
則BD=5a=2,
故答案為2.【點睛】本題考查線段垂直平分線上的點到線段兩端點的距離相等的性質,勾股定理的應用,解題關鍵是熟記性質與定理并準確識圖.14、-1或1【解析】
利用二次函數(shù)圖象上點的坐標特征找出當y=1時x的值,結合當a≤x≤a+2時函數(shù)有最大值1,即可得出關于a的一元一次方程,解之即可得出結論.【詳解】解:當y=1時,x2-2x-2=1,
解得:x1=-1,x2=3,
∵當a≤x≤a+2時,函數(shù)有最大值1,
∴a=-1或a+2=3,即a=1.
故答案為-1或1.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征以及二次函數(shù)的最值,利用二次函數(shù)圖象上點的坐標特征找出當y=1時x的值是解題的關鍵.15、【解析】解:如圖,連接AC,∵四邊形ABCD為菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD為等邊三角形,∴∠4=60°,AC=AB.在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H點,則BH=2,∴S四邊形AECF=S△ABC=BC?AH=BC?=,由“垂線段最短”可知:當正三角形AEF的邊AE與BC垂直時,邊AE最短,∴△AEF的面積會隨著AE的變化而變化,且當AE最短時,正三角形AEF的面積會最小,又∵S△CEF=S四邊形AECF﹣S△AEF,則此時△CEF的面積就會最大,∴S△CEF=S四邊形AECF﹣S△AEF=﹣××=.故答案為:.點睛:本題主要考查了菱形的性質、全等三角形判定與性質及三角形面積的計算,根據(jù)△ABE≌△ACF,得出四邊形AECF的面積是定值是解題的關鍵.16、1.88×1【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:科學記數(shù)法表示為1.88×1,故答案為:1.88×1.【點睛】此題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.17、﹣1<x<1【解析】試題分析:由圖象得:對稱軸是x=1,其中一個點的坐標為(1,0)∴圖象與x軸的另一個交點坐標為(-1,0)利用圖象可知:ax2+bx+c<0的解集即是y<0的解集,∴-1<x<1.考點:二次函數(shù)與不等式(組).三、解答題(共7小題,滿分69分)18、(1)見解析;(2)12【解析】
(1)連接OC、BC,根據(jù)題意可得OC2+PC2=OP2,即可證得OC⊥PC,由此可得出結論.(2)先根據(jù)題意證明出△PBC∽△PCA,再根據(jù)相似三角形的性質得出邊的比值,由此可得出結論.【詳解】(1)如圖,連接OC、BC∵⊙O的半徑為3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=1∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC是⊙O的切線.(2)∵AB是直徑∴∠ACB=90°∴∠ACO+∠OCB=90°∵OC⊥PC∴∠BCP+∠OCB=90°∴∠BCP=∠ACO∵OA=OC∴∠A=∠ACO∴∠A=∠BCP在△PBC和△PCA中:∠BCP=∠A,∠P=∠P∴△PBC∽△PCA,∴∴tan∠CAB=【點睛】本題考查了切線與相似三角形的判定與性質,解題的關鍵是熟練的掌握切線的判定與相似三角形的判定與性質.19、(1)①點C坐標為或;②y=x+2或y=-x+3;(2)或【解析】
(1)①根據(jù)“和諧點”的定義即可解決問題;②首先求出點C坐標,再利用待定系數(shù)法即可解決問題;(2)分兩種情形畫出圖形即可解決問題.【詳解】(1)①如圖1.觀察圖象可知滿足條件的點C坐標為C(1,5)或C'(3,5);②如圖2.由圖可知,B(5,3).∵A(1,3),∴AB=3.∵△ABC為等腰直角三角形,∴BC=3,∴C1(5,7)或C2(5,﹣1).設直線AC的表達式為y=kx+b(k≠0),當C1(5,7)時,,∴,∴y=x+2,當C2(5,﹣1)時,,∴,∴y=﹣x+3.綜上所述:直線AC的表達式是y=x+2或y=﹣x+3.(2)分兩種情況討論:①當點F在點E左側時:連接OD.則OD=,∴.②當點F在點E右側時:連接OE,OD.∵E(1,2),D(1,3),∴OE=,OD=,∴.綜上所述:或.【點睛】本題考查了一次函數(shù)綜合題、圓的有關知識、等腰直角三角形的判定和性質、“和諧點”的定義等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,學會用分類討論的首先思考問題,屬于中考壓軸題.20、購買了桂花樹苗1棵【解析】分析:首先設購買了桂花樹苗x棵,然后根據(jù)題意列出一元一次方程,從而得出答案.詳解:設購買了桂花樹苗x棵,根據(jù)題意,得:5(x+11-1)=6(x-1),解得x=1.答:購買了桂花樹苗1棵.點睛:本題主要考查的是一元一次方程的應用,屬于基礎題型.解決這個問題的關鍵就是找出等量關系以及路的長度與樹的棵樹之間的關系.21、(1)①點C的坐標為(-3,9);②滑動的距離為6(﹣1)cm;(2)OC最大值1cm.【解析】試題分析:(1)①過點C作y軸的垂線,垂足為D,根據(jù)30°的直角三角形的性質解答即可;②設點A向右滑動的距離為x,根據(jù)題意得點B向上滑動的距離也為x,根據(jù)銳角三角函數(shù)和勾股定理解答即可;(2)設點C的坐標為(x,y),過C作CE⊥x軸,CD⊥y軸,垂足分別為E,D,證得△ACE∽△BCD,利用相似三角形的性質解答即可.試題解析:解:(1)①過點C作y軸的垂線,垂足為D,如圖1:在Rt△AOB中,AB=1,OB=6,則BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=3,所以點C的坐標為(﹣3,9);②設點A向右滑動的距離為x,根據(jù)題意得點B向上滑動的距離也為x,如圖2:AO=1×cos∠BAO=1×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=1在△A'OB'中,由勾股定理得,(6﹣x)2+(6+x)2=12,解得:x=6(﹣1),∴滑動的距離為6(﹣1);(2)設點C的坐標為(x,y),過C作CE⊥x軸,CD⊥y軸,垂足分別為E,D,如圖3:則OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,∴,即,∴y=﹣x,OC2=x2+y2=x2+(﹣x)2=4x2,∴當|x|取最大值時,即C到y(tǒng)軸距離最大時,OC2有最大值,即OC取最大值,如圖,即當C'B'旋轉到與y軸垂直時.此時OC=1,故答案為1.考點:相似三角形綜合題.22、(1)雞場垂直于墻的一邊AB的長為2米;(1)雞場垂直于墻的一邊AB的長為10米時,圍成養(yǎng)雞場面積最大,最大值100米1.【解析】試題分析:(1)首先設雞場垂直于墻的一邊AB的長為x米,然后根據(jù)題意可得方程x(40-1x)=168,即可求得x的值,又由墻長15m,可得x=2,則問題得解;
(1)設圍成養(yǎng)雞場面積為S,由題意可得S與x的函數(shù)關系式,由二次函數(shù)最大值的求解方法即可求得答案;解:(1)設雞場垂直于墻的一邊AB的長為x米,則x(40﹣1x)=168,整理得:x1﹣10x+84=0,解得:x1=2,x1=6,∵墻長15m,∴0≤BC≤15,即0≤40﹣1x≤15,解得:7.5≤x≤10,∴x=2.答:雞場垂直于墻的一邊AB的長為2米.(1)圍成養(yǎng)雞場面積為S米1,則S=x(40﹣1x)=﹣1x1+40x=﹣1(x1﹣10x)=﹣1(x1﹣10x+101)+1×101=﹣1(x﹣10)1+100,∵﹣1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年國際spa原料供應合同
- 2024年度版權質押合同版權價值評估與質押期限
- 風控課件教學課件
- 2024年土地使用權抵押購房合同
- 2024年商標許可使用合同:某知名品牌
- 合同履約成本的會計處理分錄-記賬實操
- 2024年度個人向公司提供的借款合同模板
- 2024天然氣企業(yè)信息安全保護合同
- 2024年度大數(shù)據(jù)可視化設計合同
- 2024年店面租賃與管理合同
- 污水處理池 (有限空間)作業(yè)安全告知牌及警示標志
- 三年級下冊信息技術課件-3.爭當打字小能手|人教版 (共12張PPT)
- 某物業(yè)供水系統(tǒng)水泵PLC控制設計
- 中央電視臺公益廣告30年大盤點
- 化工設備使用與維護8第八章儲存設備的使用與維護課件
- 高級社會工作師直接服務個案分析六
- 國四部分重型柴油車排氣后處理系統(tǒng)型號
- 鋼筋保護層和鋼筋間距質量控制學習體會
- FURUNO雷達使用說明書0001
- 大華網絡攝像機檢測報告DHIPCHFW12XYZM
- 湘美版 六年級(上)第5課 紙魔方 (作品展示PPT)
評論
0/150
提交評論