版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
經(jīng)典專業(yè)用心精品課件本課件來源于網(wǎng)絡只供免費交流使用經(jīng)典專業(yè)用心本課件來源于網(wǎng)絡只供免費交流使用小結(jié)與復習第三章圖形的平移與旋轉(zhuǎn)小結(jié)與復習第三章圖形的平移與旋轉(zhuǎn)一、平移的特征1.對應線段;對應角;圖形的形狀和大小都不發(fā)生改變.2.對應點所連的線段平行且相等.平行且相等相等要點梳理一、平移的特征平行且相等相等要點梳理(1)原圖形向左(右)平移a個單位長度:(a>0)向右平移a個單位(2)原圖形向上(下)平移b個單位長度:(b>0)原圖形上的點P(x,y)
向左平移a個單位原圖形上的點P(x,y)
P1(x+a,y)P2(x-a,y)向上平移b個單位原圖形上的點P(x,y)
向下平移b個單位原圖形上的點(x,y)
P3(x,y+b)P4(x,y-b)二、圖形在坐標系中的平移在平面直角坐標系中內(nèi),一個圖形怎么移動,那么這個圖形上各個點就怎么移動.(1)原圖形向左(右)平移a個單位長度:(a>0)向右平移a三、旋轉(zhuǎn)的特征1.旋轉(zhuǎn)過程中,圖形上______________________
按旋轉(zhuǎn).2.任意一對對應點與旋轉(zhuǎn)中心的連線所成的角都是________,對應點到旋轉(zhuǎn)中心的距離都________.3.旋轉(zhuǎn)前后對應線段、對應角分別____,圖形的大小、形狀_________.每一點都繞旋轉(zhuǎn)中心同一旋轉(zhuǎn)方向同樣大小的角度旋轉(zhuǎn)角相等相等不變?nèi)⑿D(zhuǎn)的特征每一點都繞旋轉(zhuǎn)中心同一旋轉(zhuǎn)方向同樣大小的角度旋1.中心對稱把一個圖形繞著某一個點旋轉(zhuǎn)____,如果它能與另一個圖形重合,那么就說這兩個圖形成中心對稱,這個點叫做對稱中心,這兩個圖形中的對應點叫做關(guān)于中心的對稱點.180°四、中心對稱1.中心對稱180°四、中心對稱2.中心對稱的特征中心對稱的特征:在成中心對稱的兩個圖形中,對應點所連線段都經(jīng)過,并且被對稱中心________.3.中心對稱圖形把一個圖形繞某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心.對稱中心平分2.中心對稱的特征對稱中心平分考點一平移例1如圖所示,下列四組圖形中,有一組中的兩個圖形經(jīng)過平移其中一個能得到另一個,這組圖形是()DABCD【解析】緊扣平移的概念解題.考點講練考點一平移例1如圖所示,下列四組圖形中,有一組中的兩個平移前后的圖形形狀和大小完全相同,任何一對對應點連線段平行(或共線)且相等.方法總結(jié)針對訓練1.如圖所示,△DEF經(jīng)過平移得到△ABC,那么∠C的對應角和ED的對應邊分別是()A.∠F,ACB.∠BOD,BAC.∠F,BAD.∠BOD,ACC平移前后的圖形形狀和大小完全相同,任何一對對應考點二坐標系中的圖形平移例2如圖,直角坐標系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標為(1,2).(1)寫出點A、B的坐標:A(,)、B(,);(2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,請畫出相應圖形,則△A′B′C′的三個頂點坐標分別是A′(,)、
B′(,)、C′(,);(3)求△ABC的面積.2-1430024-13考點二坐標系中的圖形平移例2如圖,直角坐標系中,△【分析】(1)根據(jù)圖形寫出相應點的坐標即可;(2)畫出平移后圖形,根據(jù)圖形解題即可,或是讓三個點的橫坐標減去2,縱坐標加1即可得到平移后相應點的坐標;(3)△ABC的面積等于邊長為3,4的長方形的面積減去2個邊長為1,3和一個邊長為2,4的直角三角形的面積.解:(2)平移后圖形如圖所示;(3)△ABC的面積S=3×4﹣2×
×1×3﹣
×2×4=5.
A′B′C′【分析】(1)根據(jù)圖形寫出相應點的坐標即可;(2)畫出平移后方法總結(jié)直角坐標系中的圖形左右移動改變點的橫坐標,即左減右加;上下平移改變點的縱坐標,即上加下減.求格點中圖形的面積通常用割補法,常用長方形的面積減去若干直角三角形的面積表示,或是轉(zhuǎn)化為用幾個比較容易求的三角形或四邊形的面積和來表示.方法總結(jié)直角坐標系中的圖形左右移動改變點的橫坐標,即左針對訓練2.如圖,在平面直角坐標系中,P(a,b)是△ABC的邊AC上一點,△ABC經(jīng)平移后點P的對應點為P1(a+6,b+2),(1)請畫出上述平移后的△A1B1C1,并寫出點A、C、A1、C1的坐標;(2)求出以A、C、A1、C1為頂點的四邊形的面積.針對訓練2.如圖,在平面直角坐標系中,P(a,b)是△ABC解:(1)△A1B1C1如圖所示;各點的坐標為:A(﹣3,2)、C(﹣2,0)、A1(3,4)、C1(4,2);(2)如圖,連接AA1、CC1;△AC1C的面積
△AC1A1的面積
四邊形ACC1A1的面積為7+7=14.答:四邊形ACC1A1的面積為14.解:(1)△A1B1C1如圖所示;各點的坐標為:A(﹣3,考點三旋轉(zhuǎn)的概念及性質(zhì)的應用例3(1)如圖a,將△AOB繞點O按逆時針方向旋轉(zhuǎn)60°后得到△COD,若∠AOB=15°,則∠AOD的度數(shù)是()
A.15°B.60°C.45°D.75°(2)如圖b,4×4的正方形網(wǎng)格中,△MNP繞某點旋轉(zhuǎn)一定的角度,得到△M1N1P1,其旋轉(zhuǎn)中心是()A.點AB.點BC.點CD.點DABODC圖aCN1M1NMP1DPAB圖bCB
【解析】(1)關(guān)鍵找出旋轉(zhuǎn)角∠BOD=60°;(2)作線段MM1與PP1的垂直平分線,交點便是旋轉(zhuǎn)中心.考點三旋轉(zhuǎn)的概念及性質(zhì)的應用例3(1)如圖a,將△AO針對訓練3.如圖,在等腰Rt△ABC中,點O是AB的中點,AC=4,將一塊邊長足夠大的三角板的直角頂點放在O點處,將三角板繞點O旋轉(zhuǎn),始終保持三角板的直角邊與AC相交,交點為D,另一條直角邊與BC相交,交點為E,則等腰直角三角形ABC的邊被三角板覆蓋部分的兩條線段CD與CE長度之和等于.ABCDEO4針對訓練3.如圖,在等腰Rt△ABC中,點O是AB的中點,A考點四中心對稱例4下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是().
A
B
C
DD【解析】圖A.圖B都是軸對稱圖形,圖C是中心對稱圖形,圖D既是中心對稱圖形也是軸對稱圖形.考點四中心對稱例4下列圖形中,既是軸對稱圖形,又是中中心對稱圖形和軸對稱圖形的主要區(qū)別在于一個是繞一點旋轉(zhuǎn),另一個是沿一條直線對折.這是易錯點,也是辨別它們不同的關(guān)鍵.方法總結(jié)中心對稱圖形和軸對稱圖形的主要區(qū)別在于一個是繞一點旋課堂小結(jié)平移平移的概念平移的性質(zhì)前后圖形全等,對應角邊相等坐標系中的平移左加右減上加下減平面上的平行移動;由移動方向和距離所決定.課堂小結(jié)平移平移平移前后圖形全等,坐標系中的平移左加右減平面旋轉(zhuǎn)旋轉(zhuǎn)的概念在解題時如果沒有指明旋轉(zhuǎn)方向通常要分順時針和逆時針兩種情況討論.旋轉(zhuǎn)的性質(zhì)①要熟練地找出可以作為旋轉(zhuǎn)角的角;②要明確旋轉(zhuǎn)中心的確定方法.中心對稱中心對稱是一種特殊的旋轉(zhuǎn).旋轉(zhuǎn)旋轉(zhuǎn)的概念在解題時如果沒有指明旋轉(zhuǎn)方向通常要分順時針和逆經(jīng)典專業(yè)用心精品課件本課件來源于網(wǎng)絡只供免費交流使用經(jīng)典專業(yè)用心本課件來源于網(wǎng)絡只供免費交流使用小結(jié)與復習第三章圖形的平移與旋轉(zhuǎn)小結(jié)與復習第三章圖形的平移與旋轉(zhuǎn)一、平移的特征1.對應線段;對應角;圖形的形狀和大小都不發(fā)生改變.2.對應點所連的線段平行且相等.平行且相等相等要點梳理一、平移的特征平行且相等相等要點梳理(1)原圖形向左(右)平移a個單位長度:(a>0)向右平移a個單位(2)原圖形向上(下)平移b個單位長度:(b>0)原圖形上的點P(x,y)
向左平移a個單位原圖形上的點P(x,y)
P1(x+a,y)P2(x-a,y)向上平移b個單位原圖形上的點P(x,y)
向下平移b個單位原圖形上的點(x,y)
P3(x,y+b)P4(x,y-b)二、圖形在坐標系中的平移在平面直角坐標系中內(nèi),一個圖形怎么移動,那么這個圖形上各個點就怎么移動.(1)原圖形向左(右)平移a個單位長度:(a>0)向右平移a三、旋轉(zhuǎn)的特征1.旋轉(zhuǎn)過程中,圖形上______________________
按旋轉(zhuǎn).2.任意一對對應點與旋轉(zhuǎn)中心的連線所成的角都是________,對應點到旋轉(zhuǎn)中心的距離都________.3.旋轉(zhuǎn)前后對應線段、對應角分別____,圖形的大小、形狀_________.每一點都繞旋轉(zhuǎn)中心同一旋轉(zhuǎn)方向同樣大小的角度旋轉(zhuǎn)角相等相等不變?nèi)?、旋轉(zhuǎn)的特征每一點都繞旋轉(zhuǎn)中心同一旋轉(zhuǎn)方向同樣大小的角度旋1.中心對稱把一個圖形繞著某一個點旋轉(zhuǎn)____,如果它能與另一個圖形重合,那么就說這兩個圖形成中心對稱,這個點叫做對稱中心,這兩個圖形中的對應點叫做關(guān)于中心的對稱點.180°四、中心對稱1.中心對稱180°四、中心對稱2.中心對稱的特征中心對稱的特征:在成中心對稱的兩個圖形中,對應點所連線段都經(jīng)過,并且被對稱中心________.3.中心對稱圖形把一個圖形繞某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心.對稱中心平分2.中心對稱的特征對稱中心平分考點一平移例1如圖所示,下列四組圖形中,有一組中的兩個圖形經(jīng)過平移其中一個能得到另一個,這組圖形是()DABCD【解析】緊扣平移的概念解題.考點講練考點一平移例1如圖所示,下列四組圖形中,有一組中的兩個平移前后的圖形形狀和大小完全相同,任何一對對應點連線段平行(或共線)且相等.方法總結(jié)針對訓練1.如圖所示,△DEF經(jīng)過平移得到△ABC,那么∠C的對應角和ED的對應邊分別是()A.∠F,ACB.∠BOD,BAC.∠F,BAD.∠BOD,ACC平移前后的圖形形狀和大小完全相同,任何一對對應考點二坐標系中的圖形平移例2如圖,直角坐標系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標為(1,2).(1)寫出點A、B的坐標:A(,)、B(,);(2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,請畫出相應圖形,則△A′B′C′的三個頂點坐標分別是A′(,)、
B′(,)、C′(,);(3)求△ABC的面積.2-1430024-13考點二坐標系中的圖形平移例2如圖,直角坐標系中,△【分析】(1)根據(jù)圖形寫出相應點的坐標即可;(2)畫出平移后圖形,根據(jù)圖形解題即可,或是讓三個點的橫坐標減去2,縱坐標加1即可得到平移后相應點的坐標;(3)△ABC的面積等于邊長為3,4的長方形的面積減去2個邊長為1,3和一個邊長為2,4的直角三角形的面積.解:(2)平移后圖形如圖所示;(3)△ABC的面積S=3×4﹣2×
×1×3﹣
×2×4=5.
A′B′C′【分析】(1)根據(jù)圖形寫出相應點的坐標即可;(2)畫出平移后方法總結(jié)直角坐標系中的圖形左右移動改變點的橫坐標,即左減右加;上下平移改變點的縱坐標,即上加下減.求格點中圖形的面積通常用割補法,常用長方形的面積減去若干直角三角形的面積表示,或是轉(zhuǎn)化為用幾個比較容易求的三角形或四邊形的面積和來表示.方法總結(jié)直角坐標系中的圖形左右移動改變點的橫坐標,即左針對訓練2.如圖,在平面直角坐標系中,P(a,b)是△ABC的邊AC上一點,△ABC經(jīng)平移后點P的對應點為P1(a+6,b+2),(1)請畫出上述平移后的△A1B1C1,并寫出點A、C、A1、C1的坐標;(2)求出以A、C、A1、C1為頂點的四邊形的面積.針對訓練2.如圖,在平面直角坐標系中,P(a,b)是△ABC解:(1)△A1B1C1如圖所示;各點的坐標為:A(﹣3,2)、C(﹣2,0)、A1(3,4)、C1(4,2);(2)如圖,連接AA1、CC1;△AC1C的面積
△AC1A1的面積
四邊形ACC1A1的面積為7+7=14.答:四邊形ACC1A1的面積為14.解:(1)△A1B1C1如圖所示;各點的坐標為:A(﹣3,考點三旋轉(zhuǎn)的概念及性質(zhì)的應用例3(1)如圖a,將△AOB繞點O按逆時針方向旋轉(zhuǎn)60°后得到△COD,若∠AOB=15°,則∠AOD的度數(shù)是()
A.15°B.60°C.45°D.75°(2)如圖b,4×4的正方形網(wǎng)格中,△MNP繞某點旋轉(zhuǎn)一定的角度,得到△M1N1P1,其旋轉(zhuǎn)中心是()A.點AB.點BC.點CD.點DABODC圖aCN1M1NMP1DPAB圖bCB
【解析】(1)關(guān)鍵找出旋轉(zhuǎn)角∠BOD=60°;(2)作線段MM1與PP1的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 粽子涂鴉課程設計
- 粘土創(chuàng)意手工課程設計
- 玉米加工企業(yè)的環(huán)境友好型生產(chǎn)模式考核試卷
- 煤炭制品行業(yè)市場前景展望考核試卷
- 生物質(zhì)燃氣發(fā)電設備的智能控制系統(tǒng)設計考核試卷
- 電子真空器件的電源設計與優(yōu)化考核試卷
- 電信網(wǎng)絡規(guī)劃設計考核試卷
- 電氣安裝暖通空調(diào)設備的電氣控制考核試卷
- 焙烤食品制造的產(chǎn)品推廣策略考核試卷
- 2024年詳解:工程變更與追加合同的簽訂要點
- 廣東省廣州市越秀區(qū)2022-2023學年八年級上學期期末歷史試題(含答案)
- MOOC 計量經(jīng)濟學-西南財經(jīng)大學 中國大學慕課答案
- 測控電路第7章信號細分與辨向電路
- 外研版(三起)小學英語四年級上冊教案(全冊)
- 小學生體育學習評價表
- 哈爾濱工業(yè)大學信紙模版
- 餐飲店應聘人員面試測評表
- 踝關(guān)節(jié)扭傷.ppt
- APQP全套表格最新版(共98頁)
- 《合作意向確認函》范本
- 三年級數(shù)學上冊全冊練習題
評論
0/150
提交評論