陜西省西安市藍(lán)田縣2022年九年級數(shù)學(xué)上冊期末統(tǒng)考模擬試題含解析_第1頁
陜西省西安市藍(lán)田縣2022年九年級數(shù)學(xué)上冊期末統(tǒng)考模擬試題含解析_第2頁
陜西省西安市藍(lán)田縣2022年九年級數(shù)學(xué)上冊期末統(tǒng)考模擬試題含解析_第3頁
陜西省西安市藍(lán)田縣2022年九年級數(shù)學(xué)上冊期末統(tǒng)考模擬試題含解析_第4頁
陜西省西安市藍(lán)田縣2022年九年級數(shù)學(xué)上冊期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,在Rt△ABO中,∠AOB=90°,AO=BO=2,以O(shè)為圓心,AO為半徑作半圓,以A為圓心,AB為半徑作弧BD,則圖中陰影部分的面積為()A.3π B.π+1 C.π D.22.如圖,BD是⊙O的直徑,圓周角∠A=30,則∠CBD的度數(shù)是()A.30 B.45 C.60 D.803.二次函數(shù)y=x2﹣2x+2的頂點坐標(biāo)是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)4.下列兩個圖形:①兩個等腰三角形;②兩個直角三角形;③兩個正方形;④兩個矩形;⑤兩個菱形;⑥兩個正五邊形.其中一定相似的有()A.2組B.3組C.4組D.5組5.如圖,在中,,,折疊使得點落在邊上的點處,折痕為.連接、,下列結(jié)論:①△是等腰直角三角形;②;③;④.其中正確的個數(shù)是()A.1 B.2 C.3 D.46.如圖是二次函數(shù)的圖象,有下面四個結(jié)論:;;;,其中正確的結(jié)論是

A. B. C. D.7.圓錐的底面半徑為2,母線長為6,它的側(cè)面積為()A. B. C. D.8.如圖,三個邊長均為的正方形重疊在一起,、是其中兩個正方形對角線的交點,則兩個陰影部分面積之和是()A. B. C. D.9.若點A(2,y1),B(﹣3,y2),C(﹣1,y3)三點在拋物線y=x2﹣4x﹣m的圖象上,則y1、y2、y3的大小關(guān)系是()A.y1>y2>y3 B.y2>y1>y3 C.y2>y3>y1 D.y3>y1>y210.若,則的值為()A. B. C. D.﹣二、填空題(每小題3分,共24分)11.拋物線的對稱軸過點,點與拋物線的頂點之間的距離為,拋物線的表達(dá)式為______.12.反比例函數(shù)y=的圖象如圖所示,A,P為該圖象上的點,且關(guān)于原點成中心對稱.在△PAB中,PB∥y軸,AB∥x軸,PB與AB相交于點B.若△PAB的面積大于12,則關(guān)于x的方程(a-1)x2-x+=0的根的情況是________________.13.如圖,起重機(jī)臂長,露在水面上的鋼纜長,起重機(jī)司機(jī)想看看被打撈的沉船情況,在豎直平面內(nèi)把起重機(jī)臂逆時針轉(zhuǎn)動到的位置,此時露在水面上的鋼纜的長度是___________.14.若反比例函數(shù)y=的圖象與一次函數(shù)y=﹣x+3的圖象的一個交點到x軸的距離為1,則k=_____.15.如圖,一條公路的轉(zhuǎn)彎處是一段圓弧AB,點O是這段弧所在圓的圓心,AB=40m,點C是的中點,且CD=10m,則這段彎路所在圓的半徑為__________m.16.如圖△ABC中,∠C=90°,AC=8cm,AB的垂直平分線MN交AC于D,連接BD,若cos∠BDC=,則BC的長為_____.17.如圖,AE,AD,BC分別切⊙O于點E、D和點F,若AD=8cm,則△ABC的周長為_______cm.18.已知一個圓錐底面圓的半徑為6cm,高為8cm,則圓錐的側(cè)面積為_____cm1.(結(jié)果保留π)三、解答題(共66分)19.(10分)先化簡,再求值:(x-1)÷(x-),其中x=+120.(6分)定義:有且僅有一組對角相等的凸四邊形叫做“準(zhǔn)平行四邊形”.例如:凸四邊形中,若,則稱四邊形為準(zhǔn)平行四邊形.(1)如圖①,是上的四個點,,延長到,使.求證:四邊形是準(zhǔn)平行四邊形;(2)如圖②,準(zhǔn)平行四邊形內(nèi)接于,,若的半徑為,求的長;(3)如圖③,在中,,若四邊形是準(zhǔn)平行四邊形,且,請直接寫出長的最大值.21.(6分)如圖,拋物線y=ax2+bx﹣3經(jīng)過點A(2,﹣3),與x軸負(fù)半軸交于點B,與y軸交于點C,且OC=3OB.(1)求拋物線的解析式;(2)拋物線的對稱軸上有一點P,使PB+PC的值最小,求點P的坐標(biāo);(3)點M在拋物線上,點N在拋物線的對稱軸上,是否存在以點A,B,M,N為頂點的四邊形是平行四邊形?若存在,直接寫出所有符合條件的點M的坐標(biāo);若不存在,請說明理由.22.(8分)某電商在購物平臺上銷售一款小電器,其進(jìn)價為元件,每銷售一件需繳納平臺推廣費(fèi)元,該款小電器每天的銷售量(件)與每件的銷售價格(元)滿足函數(shù)關(guān)系:.為保證市場穩(wěn)定,供貨商規(guī)定銷售價格不得低于元件且不得高于元件.(1)寫出每天的銷售利潤(元)與銷售價格(元)的函數(shù)關(guān)系式;(2)每件小電器的銷售價格定為多少元時,才能使每天獲得的利潤最大,最大是多少元?23.(8分)某次足球比賽,隊員甲在前場給隊友乙擲界外球.如圖所示:已知兩人相距8米,足球出手時的高度為2.4米,運(yùn)行的路線是拋物線,當(dāng)足球運(yùn)行的水平距離為2米時,足球達(dá)到最大高度4米.請你根據(jù)圖中所建坐標(biāo)系,求出拋物線的表達(dá)式.24.(8分)如圖,AB是⊙O的直徑,BC是⊙O的弦,直線MN與⊙O相切于點C,過點B作BD⊥MN于點D.(1)求證:∠ABC=∠CBD;(2)若BC=4,CD=4,則⊙O的半徑是.25.(10分)國慶期間電影《我和我的祖國》上映,在全國范圍內(nèi)掀起了觀影狂潮.小王一行5人相約觀影,由于票源緊張,只好選擇3人去A影院,余下2人去B影院,已知A影院的票價比B影院的每張便宜5元,5張影票的總價格為310元.(1)求A影院《我和我的祖國》的電影票為多少錢一張;(2)次日,A影院《我和我的祖國》的票價與前一日保持不變,觀影人數(shù)為4000人.B影院為吸引客源將《我和我的祖國》票價調(diào)整為比A影院的票價低a%但不低于50元,結(jié)果B影院當(dāng)天的觀影人數(shù)比A影院的觀影人數(shù)多了2a%,經(jīng)統(tǒng)計,當(dāng)日A、B兩個影院《我和我的祖國》的票房總收入為505200元,求a的值.26.(10分)某超市銷售一種書包,平均每天可銷售100件,每件盈利30元.試營銷階段發(fā)現(xiàn):該商品每件降價1元,超市平均每天可多售出10件.設(shè)每件商品降價元時,日盈利為元.據(jù)此規(guī)律,解決下列問題:(1)降價后每件商品盈利元,超市日銷售量增加件(用含的代數(shù)式表示);(2)在上述條件不變的情況下,求每件商品降價多少元時,超市的日盈利最大?最大為多少元?

參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)題意和圖形可以求得的長,然后根據(jù)圖形,可知陰影部分的面積是半圓的面積減去扇形的面積,從而可以解答本題.【詳解】解:在中,,,,圖中陰影部分的面積為:,故選:C.【點睛】本題考查扇形面積的計算,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.2、C【解析】由BD為⊙O的直徑,可證∠BCD=90°,又由圓周角定理知,∠D=∠A=30°,即可求∠CBD.【詳解】解:如圖,連接CD,∵BD為⊙O的直徑,∴∠BCD=90°,∴∠D=∠A=30°,∴∠CBD=90°-∠D=60°.故選C.【點睛】本題利用了直徑所對的圓周角是直角和圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.3、A【分析】根據(jù)頂點坐標(biāo)公式,可得答案.【詳解】解:的頂點橫坐標(biāo)是,縱坐標(biāo)是,的頂點坐標(biāo)是.故選A.【點睛】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)的頂點坐標(biāo)是4、A【解析】試題解析:①不相似,因為沒有指明相等的角或成比例的邊;②不相似,因為只有一對角相等,不符合相似三角形的判定;③相似,因為其四個角均相等,四條邊都相等,符合相似的條件;④不相似,雖然其四個角均相等,因為沒有指明邊的情況,不符合相似的條件;⑤不相似,因為菱形的角不一定對應(yīng)相等,不符合相似的條件;⑥相似,因為兩正五邊形的角相等,對應(yīng)邊成比例,符合相似的條件;所以正確的有③⑥.故選A.5、C【分析】根據(jù)折疊的性質(zhì)、等腰直角三角形的定義、相似三角形的判定定理與性質(zhì)、三角形的面積公式逐個判斷即可得.【詳解】由折疊的性質(zhì)得:又在中,即,則是等腰直角三角形,結(jié)論①正確由結(jié)論①可得:,則結(jié)論②正確,則結(jié)論③正確如圖,過點E作由結(jié)論①可得:是等腰直角三角形,由勾股定理得:,則結(jié)論④錯誤綜上,正確的結(jié)論有①②③這3個故選:C.【點睛】本題考查了折疊的性質(zhì)、等腰直角三角形的定義、相似三角形的判定定理與性質(zhì)等知識點,熟記并靈活運(yùn)用各定理與性質(zhì)是解題關(guān)鍵.6、D【分析】根據(jù)拋物線開口方向得到,根據(jù)對稱軸得到,根據(jù)拋物線與軸的交點在軸下方得到,所以;時,由圖像可知此時,所以;由對稱軸,可得;當(dāng)時,由圖像可知此時,即,將代入可得.【詳解】①根據(jù)拋物線開口方向得到,根據(jù)對稱軸得到,根據(jù)拋物線與軸的交點在軸下方得到,所以,故①正確.②時,由圖像可知此時,即,故②正確.③由對稱軸,可得,所以錯誤,故③錯誤;④當(dāng)時,由圖像可知此時,即,將③中變形為,代入可得,故④正確.故答案選D.【點睛】本題考查了二次函數(shù)的圖像與系數(shù)的關(guān)系,注意用數(shù)形結(jié)合的思想解決問題.7、B【分析】根據(jù)圓錐的底面半徑為2,母線長為6,直接利用圓錐的側(cè)面積公式求出它的側(cè)面積.【詳解】根據(jù)圓錐的側(cè)面積公式:rl=×2×6=12,故選:B.【點睛】本題主要考查了圓錐側(cè)面積公式.熟練地應(yīng)用圓錐側(cè)面積公式求出是解決問題的關(guān)鍵.8、A【分析】連接AN,CN,通過將每部分陰影的面積都轉(zhuǎn)化為正方形ACFE的面積的,則答案可求.【詳解】如圖,連接AN,CN∵四邊形ACFE是正方形∴∵,∴∴∴所以四邊形BCDN的面積為正方形ACFE的面積的同理可得另一部分陰影的面積也是正方形ACFE的面積的∴兩部分陰影部分的面積之和為正方形ACFE的面積的即故選A【點睛】本題主要考查不規(guī)則圖形的面積,能夠利用全等三角形對面積進(jìn)行轉(zhuǎn)化是解題的關(guān)鍵.9、C【分析】先求出二次函數(shù)的圖象的對稱軸,然后判斷出,,在拋物線上的位置,再根據(jù)二次函數(shù)的增減性求解.【詳解】解:∵二次函數(shù)中,∴開口向上,對稱軸為,∵中,∴最小,又∵,都在對稱軸的左側(cè),而在對稱軸的左側(cè),隨得增大而減小,故.∴.故選:C.【點睛】本題考查二次函數(shù)的圖象與性質(zhì),特別是對稱軸與其兩側(cè)的增減性,熟練掌握圖象與性質(zhì)是解答關(guān)鍵.10、C【分析】將變形為﹣1,再代入計算即可求解.【詳解】解:∵,∴=﹣1=﹣1=.故選:C.【點睛】考查了比例的性質(zhì),解題的關(guān)鍵是將變形為.二、填空題(每小題3分,共24分)11、y=-x2-2x或y=-x2-2x+8【分析】根據(jù)題意確定出拋物線頂點坐標(biāo),進(jìn)而確定出m與n的值,即可確定出拋物線解析式.【詳解】∵拋物線的對稱軸過點,∴設(shè)頂點坐標(biāo)為:根據(jù)題意得:,解得:或拋物線的頂點坐標(biāo)為(-1,1)或(-1,9),可得:,或,解得:,或,

則該拋物線解析式為:或,

故答案為:或.【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式,以及二次函數(shù)的性質(zhì),熟練掌握待定系數(shù)法是解本題的關(guān)鍵.12、沒有實數(shù)根【解析】分析:由比例函數(shù)y=的圖象位于一、三象限得出a+4>0,A、P為該圖象上的點,且關(guān)于原點成中心對稱,得出1xy>11,進(jìn)一步得出a+4>6,由此確定a的取值范圍,進(jìn)一步利用根的判別式判定方程根的情況即可.詳解:∵反比例函數(shù)y=的圖象位于一、三象限,∴a+4>0,∴a>-4,∵A、P關(guān)于原點成中心對稱,PB∥y軸,AB∥x軸,△PAB的面積大于11,∴1xy>11,即a+4>6,a>1∴a>1.∴△=(-1)1-4(a-1)×=1-a<0,∴關(guān)于x的方程(a-1)x1-x+=0沒有實數(shù)根.故答案為:沒有實數(shù)根.點睛:此題綜合考查了反比例函數(shù)的圖形與性質(zhì),一元二次方程根的判別式,注意正確判定a的取值范圍是解決問題的關(guān)鍵.13、30m【解析】首先在Rt△ABC中,利用正弦值可推出∠CAB=45°,然后由轉(zhuǎn)動角度可得出∠C'AB'=60°,在Rt△C'AB'中利用60°的正弦即可求出B'C'.【詳解】再Rt△ABC中,∵∴∠CAB=45°起重機(jī)臂逆時針轉(zhuǎn)動到的位置后,∠C'AB'=∠CAB+15°=60°在Rt△C'AB'中,B'C'=m故答案為:30m.【點睛】本題考查了解直角三角形,熟練掌握直角三角形中的邊角關(guān)系是解題的關(guān)鍵.14、2或﹣1【分析】分反比例函數(shù)y=在第一象限和第四象限兩種情況解答.【詳解】解:當(dāng)反比例函數(shù)y=在第一象限時,﹣x+3=1,解得x=2,即反比例函數(shù)y=的圖象與一次函數(shù)y=﹣x+3的圖象交于點(2,1),∴k=2×1=2;當(dāng)反比例函數(shù)y=在第四象限時,﹣x+3=﹣1,解得x=1,即反比例函數(shù)y=的圖象與一次函數(shù)y=﹣x+3的圖象交于點(1,﹣1),∴k=1×(﹣1)=﹣1.∴k=2或﹣1.故答案為:2或﹣1【點睛】本題主要考察反比例函數(shù)和一次函數(shù)的交點問題,分象限情況作答是解題關(guān)鍵.15、25m【分析】根據(jù)垂徑定理可得△BOD為直角三角形,且BD=AB,之后利用勾股定理進(jìn)一步求解即可.【詳解】∵點C是的中點,∴OC平分AB,∴∠BOD=90°,BD=AB=20m,設(shè)OB=x,則:OD=(x-10)m,∴,解得:,∴OB=25m,故答案為:25m.【點睛】本題主要考查了垂徑定理與勾股定理的綜合運(yùn)用,熟練掌握相關(guān)概念是解題關(guān)鍵.16、4【解析】試題解析:∵可∴設(shè)DC=3x,BD=5x,又∵M(jìn)N是線段AB的垂直平分線,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,故答案為:4cm.17、16【解析】∵AE,AD,BC分別切O于點E.

D和點F,∴AD=AC,DB=BF,CE=CF,∴AB+BC+AC=AB+BF+CF+AC=AB+BD+CE+AC=AD+AE=2AD=16cm,故答案為:16.18、60π【解析】試題分析:先根據(jù)勾股定理求得圓錐的母線長,再根據(jù)圓錐的側(cè)面積公式求解即可.由題意得圓錐的母線長∴圓錐的側(cè)面積.考點:勾股定理,圓錐的側(cè)面積點評:解題的關(guān)鍵是熟練掌握圓錐的側(cè)面積公式:圓錐的側(cè)面積底面半徑×母線.三、解答題(共66分)19、1+【分析】先化簡分式,然后將x的值代入計算即可.【詳解】解:原式=(x?1)÷,當(dāng)x=+1時,原式=.【點睛】本題考查了分式的化簡求值,熟練掌握分式混合運(yùn)算法則是解題的關(guān)鍵.20、(1)見解析;(2);(3)【分析】(1)先根據(jù)同弧所對的圓周角相等證明三角形ABC為等邊三角形,得到∠ACB=60°,再求出∠APB=60°,根據(jù)AQ=AP判定△APQ為等邊三角形,∠AQP=∠QAP=60°,故∠ACB=∠AQP,可判斷∠QAC>120°,∠QBC<120°,故∠QAC≠∠QBC,可證四邊形是準(zhǔn)平行四邊形;(2)根據(jù)已知條件可判斷∠ABC≠∠ADC,則可得∠BAD=∠BCD=90°,連接BD,則BD為直徑為10,根據(jù)BC=CD得△BCD為等腰直角三角形,則∠BAC=∠BDC=45°,在直角三角形BCD中利用勾股定理或三角函數(shù)求出BC的長,過B點作BE⊥AC,分別在直角三角形ABE和△BEC中,利用三角函數(shù)和勾股定理求出AE、CE的長,即可求出AC的長.(3)根據(jù)已知條件可得:∠ADC=∠ABC=60°,延長BC到E點,使BE=BA,可得三角形ABE為等邊三角形,∠E=60°,過A、E、C三點作圓o,則AE為直徑,點D在點C另一側(cè)的弧AE上(點A、點E除外),連接BO交弧AE于D點,則此時BD的長度最大,根據(jù)已知條件求出BO、OD的長度,即可求解.【詳解】(1)∵∴∠ABC=∠BAC=60°∴△ABC為等邊三角形,∠ACB=60°∵∠APQ=180°-∠APC-∠CPB=60°又AP=AQ∴△APQ為等邊三角形∴∠AQP=∠QAP=60°∴∠ACB=∠AQP∵∠QAC=∠QAP+∠PAB+∠BAC=120°+∠PAB>120°故∠QBC=360°-∠AQP-∠ACB-∠QAC<120°∴∠QAC≠∠QBC∴四邊形是準(zhǔn)平行四邊形(2)連接BD,過B點作BE⊥AC于E點∵準(zhǔn)平行四邊形內(nèi)接于,∴∠ABC≠∠ADC,∠BAD=∠BCD∵∠BAD+∠BCD=180°∴∠BAD=∠BCD=90°∴BD為的直徑∵的半徑為5∴BD=10∵BC=CD,∠BCD=90°∴∠CBD=∠BDC=45°∴BC=BDsin∠BDC=10,∠BAC=∠BDC=45°∵BE⊥AC∴∠BEA=∠BEC=90°∴AE=ABsin∠BAC=6∵∠ABE=∠BAE=45°∴BE=AE=在直角三角形BEC中,EC=∴AC=AE+EC=(3)在中,∴∠ABC=60°∵四邊形是準(zhǔn)平行四邊形,且∴∠ADC=∠ABC=60°延長BC到E點,使BE=BA,可得三角形ABE為等邊三角形,∠E=60°,過A、E、C三點作圓o,因為∠ACE=90°,則AE為直徑,點D在點C另一側(cè)的弧AE上(點A、點E除外),此時,∠ADC=∠AEC=60°,連接BO交弧AE于D點,則此時BD的長度最大.在等邊三角形ABE中,∠ACB=90°,BC=2∴AE=BE=2BC=4∴OE=OA=OD=2∴BO⊥AE∴BO=BEsin∠E=4∴BD=BO+0D=2+即BD長的最大值為2+【點睛】本題考查的是新概念及圓的相關(guān)知識,理解新概念的含義、掌握圓的性質(zhì)是解答的關(guān)鍵,本題的難點在第(3)小問,考查的是與圓相關(guān)的最大值及最小值問題,把握其中的不變量作出圓是關(guān)鍵.21、(1)(2)點P的坐標(biāo);(3)M【分析】(1)待定系數(shù)法即可得到結(jié)論;(2)根據(jù)線段垂直平分線上的點到線段兩端點的距離相等,可得M在對稱軸上,根據(jù)兩點之間線段最短,可得M點在線段AB上,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案;(3)設(shè)M(a,a2-2a-3),N(1,n),①以AB為邊,則AB∥MN,AB=MN,如圖2,過M作ME⊥對稱軸于E,AF⊥x軸于F,于是得到△ABF≌△NME,證得NE=AF=3,ME=BF=3,得到M(4,5)或(-2,5);②以AB為對角線,BN=AM,BN∥AM,如圖3,則N在x軸上,M與C重合,于是得到結(jié)論.【詳解】(1)由得,把代入,得,,拋物線的解析式為;(2)連接AB與對稱軸直線x=1的交點即為P點的坐標(biāo)(對稱取最值),設(shè)直線AB的解析式為,將A(2,-3),B(-1,0)代入,得y=-x-1,將x=1代入,得x=-2,所以點P的坐標(biāo)為(1,-2);(3)設(shè)M()①以AB為邊,則AB∥MN,如圖2,過M作對稱軸y于E,AF軸于F,則或,或∥AM,如圖3,則N在x軸上,M與C重合,綜上所述,存在以點ABMN為頂點的四邊形是平行四邊形,或或【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,全等三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì),正確的作出圖形是解題的關(guān)鍵.22、(1);(2)當(dāng)時,w有最大值,最大值為750元【分析】(1)直接利用“總利潤=每件的利潤×銷量”得出函數(shù)關(guān)系式;

(2)由(1)中的函數(shù)解析式,將其配方成頂點式,結(jié)合x的取值范圍,利用二次函數(shù)的性質(zhì)解答即可.【詳解】(1)依題意得:(2)∵∴當(dāng),w隨x的增大而減小∴當(dāng)時,w有最大值,最大值為:元.【點睛】本題主要考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是理解題意,找到題目蘊(yùn)含的相等關(guān)系,并據(jù)此列出函數(shù)關(guān)系式及熟練掌握二次函數(shù)的性質(zhì).23、y=-0.4x2+4【分析】根據(jù)題意設(shè)拋物線的表達(dá)式為y=ax2+4(),代入(-2,2.4),即可求出a.【詳解】解:設(shè)y=ax2+4()∵圖象經(jīng)過(-2,2.4)∴4a+4=2.4a=-0.4∴表達(dá)式為y=-0.4x2+4【點睛】本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是從實際問題中抽象出二次函數(shù)模型.24、(1)見解析;(2)1.【分析】(1)連接OC,由切線的性質(zhì)可得OC⊥MN,即可證得OC∥BD,由平行線的性質(zhì)和等腰三角形的性質(zhì)可得∠CBD=∠BCO=∠ABC,即可證得結(jié)論;(2)連接AC,由勾股定理求得BD,然后通過證得△ABC∽△CBD,求得直徑AB,從而求得半徑.【詳解】(1)證明:連接OC,∵M(jìn)N為⊙O的切線,∴OC⊥MN,∵BD⊥MN,∴OC∥BD,∴∠CBD=∠BCO.又∵OC=OB,∴∠BCO=∠ABC,∴∠CBD=∠ABC.;(2)解:連接AC,在Rt△BCD中,BC=4,CD=4,∴BD==8,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠ACB=∠CDB=90°,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴,即,∴AB=10,∴⊙O的半徑是1,故答案為1.【點睛】本題考查了切線的性質(zhì)和圓周角定理、三角形相似的判定和性質(zhì)以及解直角三角形,作出輔助線構(gòu)建等腰三角形、直角三角形是解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論