版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
BriefReviewThemostimportantpropertiesofparticle1Thequantizatione.gquantizationofenergyenergylevels2Particle-WaveDualityΕ=hνP=h/λPlanck-Eistain-deBroglie
relationsParticleWaveInterferenceandDiffractionΔxΔPx≥h/4impossibletospecifysimultaneouslytheprecisepositionandmomentum.state—wavefunctionDynamic
equation—waveequationamplitudeψ*ψtheprobabilityoffindingtheparticleProbabilitywaveMathematicalBackground
andPostulatesofQuantumMechanics2.1OperatorsOperatorAnoperatorisasymbolthattellsyoutodosomethingwithwhateverfollowsthesymbol.e.g.,,,,ln,sin,d/dx
……Anoperatorisarulethattransformsagivenfunctionorvectorintoanotherfunctionorvector.e.g.2.1.1BasicPropertiesofOperatorsTwooperatorsareequalifThesumanddifferenceoftwooperatorsTheproductoftwooperatorsisdefinedbyTheidentityoperatordoesnothing(ormultipliesby1)Acommonmathematicaltrickistowritethisoperatorasasumoveracompletesetofstates(moreonthislater).TheassociativelawholdsforoperatorsThecommutativelawdoesnotgenerallyholdforoperators.Ingeneral,
Itisconvenienttodefinethequantitywhichiscalledthecommutatorofand.Notethattheordermatters,Ifandhappentocommute,thenThen-thpowerofanoperator
isdefinedasnsuccessiveapplicationsoftheoperator,e.g.Theexponentialofanoperator
isdefinedviathepowerseries2.1.2LinearOperators
Almostalloperatorsencounteredinquantummechanicsarelinearoperators.Alinearoperatorisanoperatorwhichsatisfiesthefollowingtwoconditions:
wherecisaconstantandfandgarefunctions.Asanexample,considertheoperatorsd/dxand()2.Wecanseethatd/dxisalinearoperatorbecauseHowever,()2isnotalinearoperatorbecauseTheonlyothercategoryofoperatorsrelevanttoquantummechanicsisthesetofantilinearoperators,forwhichTime-reversaloperatorsareantilinear.2.1.3EigenfunctionsandEigenvalues
Aneigenfunctionofanoperatorisafunctionusuchthattheapplicationofonugivesuagain,timesaconstantMatrixdescriptionofaneigenvalueequation2.1.4OperatorExpressionoftheTime-IndependentSchr?dingerEquationDefiniteLapacianthenDefiniteHamiltonianthen2.2PostulatesofQuantumMechanicsPostulate1Thestateofaquantummechanicalsystemiscompletelyspecifiedbyafunction(r,
t)thatdependsonthecoordinatesoftheparticle(s)andontime.Thisfunction,calledthewavefunctionorstatefunction,hastheimportantpropertythat
*(r,
t)(r,
t)distheprobabilitythattheparticleliesinthevolumeelementdlocatedatrattimet.Thewavefunctionmustbesingle-valued,continuous,andfinite.Postulate2Inanymeasurementoftheobservableassociatedwithoperator
,theonlyvaluesthatwilleverbeobservedaretheeigenvaluesa,whichsatisfytheeigenvalueequationPostulate3.Ifasystemisinastatedescribedbyawavefunction
,thentheaveragevalueoftheobservablecorrespondingto
isgivenbyPostulate4.Toeveryobservableinclassicalmechanicstherecorrespondsalinear,Hermitianoperatorinquantummechanics.Table1:Physicalobservablesandtheircorrespondingquantumoperators(singleparticle)ObservableObservableOperatorOperatorNameSymbolSymbolOperationPosition
r
Multiplyby
r
Momentum
Pi
KineticenergyT
Potentialenergy
V(r)
MultiplybyV(r)
TotalenergyE
Angularmomentumlx
ly
lz
Postulate4.Anarbitrarystatecanbeexpandedinthecompletesetofeigenvectorsof
aswherenmaygotoinfinity.InthiscaseweonlyknowthatthemeasurementofAwillyieldoneofthevaluesai,butwedon'tknowwhichone.However,wedoknowtheprobabilitythateigenvalueaiwilloccur--itistheabsolutevaluesquaredofthecoefficient,|ci|2
2.3HermitianOperatorsandUnitaryOperators2.3.1
HermitianOperatorsAsmentionedpreviously,theexpectationvalueofanoperator
isgivenbyandallphysicalobservablesarerepresentedbysuchexpectationvalues.Obviously,thevalueofaphysicalobservablesuchasenergyordensitymustbereal,sowerequire<A>tobereal.Thismeansthatwemusthave<A>=<A>*,orOperators
whichsatisfythisconditionarecalledHermitian.2.3.2UnitaryOperators
Alinearoperatorwhoseinverseisitsadjointiscalledunitary.Theseoperatorscanbethoughtofasgeneralizationsofcomplexnumberswhoseabsolutevalueis1.
U-1=U?
UU?=U?U=IAunitaryoperatorpreservesthe``lengths''and``angles''betweenvectors,anditcanbeconsideredasatypeofrotationoperatorinabstractvectorspace.LikeHermitianoperators,theeigenvectorsofaunitarymatrixareorthogonal.However,itseigenvaluesarenotnecessarilyreal.Wavefunctionψ:1Thestatedescription2ψ*ψ
Probabilitydensity3Thevalueofobservable4TheaveragevalueoftheobservableTheproblemisHowtogetWavefunction?Theonlywayis3SomeAnalyticallySolubleProblemsThemotionsofparticleTranslationalmotionRotationalmotionVibrationalmotionElectronicmotionNuclearmotionTheEnergyoftheparticle:3.1TheFreeParticleAfreeparticleisonewhichmovesthroughspacewithoutexperiencinganyforces.Henceittravelsinastraightline.Itspotentialenergyiseverywhereconstant,andsocanbeassignedtobe0.TheenergystatesareNOTquantized,butanyvalueisallowed.3.2TheParticleinaBox3.2.1The1-DimensionalParticle-in-a-Box(1)Schr?dingerEquationTheparticleofmassmisconfinedbetweentwowalls:V(x)=0(0<x<l)V(x)=∞(x≤0andx≥0)letBoundaryconditionsx=0,(0)=Asin0+Bcos0=0;B=0(x)=Asinkxx=l,(l)=Asinkl=0;sinkl=0,kl=nπsquare,
n=1,2,3……quantumnumberThegeneralsolutionsare
(x)=Asinkx+Bcoskx
n=1,2,3…...(2)PropertiesofthesolutionsTherefore,thecompletesolutiontotheproblemis(i)Thequantizationofenergy
n=1,2,3…...quantumnumberThislowest,irremovableenergyiscalledthezero-pointenergy.E=T+VThe1-DimensionalParticle-in-a-Box,V=0,E=T(a)Zero-pointenergy(b)Elorm,EClassicalorfreeparticle,E0.(ii)WavefunctionandquantumnumbernGroundstateandexcitatedstate(iii)Probabilitydistributions(iv)Applications1,3-butadieneb-carotenel=210.140nm=3.08nm.Andthelowest11energylevelswillbefilled.Carrotsareorangebecausetheabsorptionoftheshortwavelength(blue)lightleavesonlythered-orangetoreflect.(v)OrthogonalityandthebracketnotationTwowavefuctionsareorthogonaliftheirproductvanishes.e.g.Theintegralisoftenwritten<n|n’>=0(n’n)Diracbracketnotation
<n|bra|n>ketNormalizedwavefuctions<n|n>=1Thesetwoexpressionscanbecombinedintoasingleexpression:Kroneckerdelta3.3TheTwoandThree-DimensionalParticle-in-a-Box3.3.1Motionintwodimensions(1)Schr?dingerEquationInbox,V=0(2)Separationofvariablesψ=X(x)·Y(y)E=Ex+Ey(3)Thesolution(4)DegeneracyConsiderthecasenx=1,ny=2andnx=2,ny=1Whena=bWesaythatthestates|1,2>and|2,1>aredegenerate.3.3.2Motioninthreedimensions(1)Schr?dingerEquationInbox,V=0Separationofvariablesψ=X(x)·Y(y)·Z(z)E=Ex+Ey+Ez(2)Solution
(3)DegeneracyCubic,a
=b=c112121211E112=E121=E2113.4Vibrationmotion3.4.1TheHarmonicOscillator
(1)Schr?dingerEquationConsideraparticlesubjecttoarestoring
forceF=-kx,thepotentialisthenZero-point:(2)Thesolutions(i)Theenergylevelsv=0,1,2,3…(ii)Thewavefunctions3.5RotationalMotionR=ra+rbxyzrarbBAOTherigidrotorisasimplemodelofarotatingdiatomicmolecule.Weconsiderthediatomictoconsistoftwopointmassesatafixedinternucleardistance.(1)Schr?dingerEquationForarigidrotorso(2)ThesolutionsAfteralittleeffort,theeigenf
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度森林資源可持續(xù)開發(fā)與木材購銷合作協(xié)議4篇
- 2025版學(xué)校宿管員招聘、培訓(xùn)及考核合同2篇
- 二零二五年版在線教育平臺(tái)合同欺詐風(fēng)險(xiǎn)控制與賠償協(xié)議3篇
- 基于2025年度預(yù)算的科技創(chuàng)新平臺(tái)建設(shè)合同
- 2025個(gè)人勞動(dòng)合同示范文本及勞動(dòng)法解讀4篇
- 二零二五年度健康養(yǎng)老產(chǎn)業(yè)合作框架協(xié)議4篇
- 2025年陜西勞動(dòng)合同解除與終止操作規(guī)范及案例分析3篇
- 二零二五年度國際美食餐廳經(jīng)理聘用合同范本3篇
- 2025年度魚塘承包與農(nóng)業(yè)科技推廣合同4篇
- 2025版文化創(chuàng)意產(chǎn)業(yè)貸款擔(dān)保協(xié)議范本9篇
- 開展課外讀物負(fù)面清單管理的具體實(shí)施舉措方案
- 2025年云南中煙工業(yè)限責(zé)任公司招聘420人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025-2030年中國洗衣液市場未來發(fā)展趨勢及前景調(diào)研分析報(bào)告
- 2024解析:第三章物態(tài)變化-基礎(chǔ)練(解析版)
- 北京市房屋租賃合同自行成交版北京市房屋租賃合同自行成交版
- 《AM聚丙烯酰胺》課件
- 系統(tǒng)動(dòng)力學(xué)課件與案例分析
- 《智能網(wǎng)聯(lián)汽車智能傳感器測試與裝調(diào)》電子教案
- 客戶分級(jí)管理(標(biāo)準(zhǔn)版)課件
- GB/T 32399-2024信息技術(shù)云計(jì)算參考架構(gòu)
- 人教版數(shù)學(xué)七年級(jí)下冊(cè)數(shù)據(jù)的收集整理與描述小結(jié)
評(píng)論
0/150
提交評(píng)論