量子化學(xué)與群論基礎(chǔ)(5)課件_第1頁
量子化學(xué)與群論基礎(chǔ)(5)課件_第2頁
量子化學(xué)與群論基礎(chǔ)(5)課件_第3頁
量子化學(xué)與群論基礎(chǔ)(5)課件_第4頁
量子化學(xué)與群論基礎(chǔ)(5)課件_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

BriefReviewThemostimportantpropertiesofparticle1Thequantizatione.gquantizationofenergyenergylevels2Particle-WaveDualityΕ=hνP=h/λPlanck-Eistain-deBroglie

relationsParticleWaveInterferenceandDiffractionΔxΔPx≥h/4impossibletospecifysimultaneouslytheprecisepositionandmomentum.state—wavefunctionDynamic

equation—waveequationamplitudeψ*ψtheprobabilityoffindingtheparticleProbabilitywaveMathematicalBackground

andPostulatesofQuantumMechanics2.1OperatorsOperatorAnoperatorisasymbolthattellsyoutodosomethingwithwhateverfollowsthesymbol.e.g.,,,,ln,sin,d/dx

……Anoperatorisarulethattransformsagivenfunctionorvectorintoanotherfunctionorvector.e.g.2.1.1BasicPropertiesofOperatorsTwooperatorsareequalifThesumanddifferenceoftwooperatorsTheproductoftwooperatorsisdefinedbyTheidentityoperatordoesnothing(ormultipliesby1)Acommonmathematicaltrickistowritethisoperatorasasumoveracompletesetofstates(moreonthislater).TheassociativelawholdsforoperatorsThecommutativelawdoesnotgenerallyholdforoperators.Ingeneral,

Itisconvenienttodefinethequantitywhichiscalledthecommutatorofand.Notethattheordermatters,Ifandhappentocommute,thenThen-thpowerofanoperator

isdefinedasnsuccessiveapplicationsoftheoperator,e.g.Theexponentialofanoperator

isdefinedviathepowerseries2.1.2LinearOperators

Almostalloperatorsencounteredinquantummechanicsarelinearoperators.Alinearoperatorisanoperatorwhichsatisfiesthefollowingtwoconditions:

wherecisaconstantandfandgarefunctions.Asanexample,considertheoperatorsd/dxand()2.Wecanseethatd/dxisalinearoperatorbecauseHowever,()2isnotalinearoperatorbecauseTheonlyothercategoryofoperatorsrelevanttoquantummechanicsisthesetofantilinearoperators,forwhichTime-reversaloperatorsareantilinear.2.1.3EigenfunctionsandEigenvalues

Aneigenfunctionofanoperatorisafunctionusuchthattheapplicationofonugivesuagain,timesaconstantMatrixdescriptionofaneigenvalueequation2.1.4OperatorExpressionoftheTime-IndependentSchr?dingerEquationDefiniteLapacianthenDefiniteHamiltonianthen2.2PostulatesofQuantumMechanicsPostulate1Thestateofaquantummechanicalsystemiscompletelyspecifiedbyafunction(r,

t)thatdependsonthecoordinatesoftheparticle(s)andontime.Thisfunction,calledthewavefunctionorstatefunction,hastheimportantpropertythat

*(r,

t)(r,

t)distheprobabilitythattheparticleliesinthevolumeelementdlocatedatrattimet.Thewavefunctionmustbesingle-valued,continuous,andfinite.Postulate2Inanymeasurementoftheobservableassociatedwithoperator

,theonlyvaluesthatwilleverbeobservedaretheeigenvaluesa,whichsatisfytheeigenvalueequationPostulate3.Ifasystemisinastatedescribedbyawavefunction

,thentheaveragevalueoftheobservablecorrespondingto

isgivenbyPostulate4.Toeveryobservableinclassicalmechanicstherecorrespondsalinear,Hermitianoperatorinquantummechanics.Table1:Physicalobservablesandtheircorrespondingquantumoperators(singleparticle)ObservableObservableOperatorOperatorNameSymbolSymbolOperationPosition

r

Multiplyby

r

Momentum

Pi

KineticenergyT

Potentialenergy

V(r)

MultiplybyV(r)

TotalenergyE

Angularmomentumlx

ly

lz

Postulate4.Anarbitrarystatecanbeexpandedinthecompletesetofeigenvectorsof

aswherenmaygotoinfinity.InthiscaseweonlyknowthatthemeasurementofAwillyieldoneofthevaluesai,butwedon'tknowwhichone.However,wedoknowtheprobabilitythateigenvalueaiwilloccur--itistheabsolutevaluesquaredofthecoefficient,|ci|2

2.3HermitianOperatorsandUnitaryOperators2.3.1

HermitianOperatorsAsmentionedpreviously,theexpectationvalueofanoperator

isgivenbyandallphysicalobservablesarerepresentedbysuchexpectationvalues.Obviously,thevalueofaphysicalobservablesuchasenergyordensitymustbereal,sowerequire<A>tobereal.Thismeansthatwemusthave<A>=<A>*,orOperators

whichsatisfythisconditionarecalledHermitian.2.3.2UnitaryOperators

Alinearoperatorwhoseinverseisitsadjointiscalledunitary.Theseoperatorscanbethoughtofasgeneralizationsofcomplexnumberswhoseabsolutevalueis1.

U-1=U?

UU?=U?U=IAunitaryoperatorpreservesthe``lengths''and``angles''betweenvectors,anditcanbeconsideredasatypeofrotationoperatorinabstractvectorspace.LikeHermitianoperators,theeigenvectorsofaunitarymatrixareorthogonal.However,itseigenvaluesarenotnecessarilyreal.Wavefunctionψ:1Thestatedescription2ψ*ψ

Probabilitydensity3Thevalueofobservable4TheaveragevalueoftheobservableTheproblemisHowtogetWavefunction?Theonlywayis3SomeAnalyticallySolubleProblemsThemotionsofparticleTranslationalmotionRotationalmotionVibrationalmotionElectronicmotionNuclearmotionTheEnergyoftheparticle:3.1TheFreeParticleAfreeparticleisonewhichmovesthroughspacewithoutexperiencinganyforces.Henceittravelsinastraightline.Itspotentialenergyiseverywhereconstant,andsocanbeassignedtobe0.TheenergystatesareNOTquantized,butanyvalueisallowed.3.2TheParticleinaBox3.2.1The1-DimensionalParticle-in-a-Box(1)Schr?dingerEquationTheparticleofmassmisconfinedbetweentwowalls:V(x)=0(0<x<l)V(x)=∞(x≤0andx≥0)letBoundaryconditionsx=0,(0)=Asin0+Bcos0=0;B=0(x)=Asinkxx=l,(l)=Asinkl=0;sinkl=0,kl=nπsquare,

n=1,2,3……quantumnumberThegeneralsolutionsare

(x)=Asinkx+Bcoskx

n=1,2,3…...(2)PropertiesofthesolutionsTherefore,thecompletesolutiontotheproblemis(i)Thequantizationofenergy

n=1,2,3…...quantumnumberThislowest,irremovableenergyiscalledthezero-pointenergy.E=T+VThe1-DimensionalParticle-in-a-Box,V=0,E=T(a)Zero-pointenergy(b)Elorm,EClassicalorfreeparticle,E0.(ii)WavefunctionandquantumnumbernGroundstateandexcitatedstate(iii)Probabilitydistributions(iv)Applications1,3-butadieneb-carotenel=210.140nm=3.08nm.Andthelowest11energylevelswillbefilled.Carrotsareorangebecausetheabsorptionoftheshortwavelength(blue)lightleavesonlythered-orangetoreflect.(v)OrthogonalityandthebracketnotationTwowavefuctionsareorthogonaliftheirproductvanishes.e.g.Theintegralisoftenwritten<n|n’>=0(n’n)Diracbracketnotation

<n|bra|n>ketNormalizedwavefuctions<n|n>=1Thesetwoexpressionscanbecombinedintoasingleexpression:Kroneckerdelta3.3TheTwoandThree-DimensionalParticle-in-a-Box3.3.1Motionintwodimensions(1)Schr?dingerEquationInbox,V=0(2)Separationofvariablesψ=X(x)·Y(y)E=Ex+Ey(3)Thesolution(4)DegeneracyConsiderthecasenx=1,ny=2andnx=2,ny=1Whena=bWesaythatthestates|1,2>and|2,1>aredegenerate.3.3.2Motioninthreedimensions(1)Schr?dingerEquationInbox,V=0Separationofvariablesψ=X(x)·Y(y)·Z(z)E=Ex+Ey+Ez(2)Solution

(3)DegeneracyCubic,a

=b=c112121211E112=E121=E2113.4Vibrationmotion3.4.1TheHarmonicOscillator

(1)Schr?dingerEquationConsideraparticlesubjecttoarestoring

forceF=-kx,thepotentialisthenZero-point:(2)Thesolutions(i)Theenergylevelsv=0,1,2,3…(ii)Thewavefunctions3.5RotationalMotionR=ra+rbxyzrarbBAOTherigidrotorisasimplemodelofarotatingdiatomicmolecule.Weconsiderthediatomictoconsistoftwopointmassesatafixedinternucleardistance.(1)Schr?dingerEquationForarigidrotorso(2)ThesolutionsAfteralittleeffort,theeigenf

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論