版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知不等式組表示的平面區(qū)域的面積為9,若點(diǎn),則的最大值為()A.3 B.6 C.9 D.122.若,則下列關(guān)系式正確的個(gè)數(shù)是()①②③④A.1 B.2 C.3 D.43.從5名學(xué)生中選出4名分別參加數(shù)學(xué),物理,化學(xué),生物四科競(jìng)賽,其中甲不能參加生物競(jìng)賽,則不同的參賽方案種數(shù)為A.48 B.72 C.90 D.964.設(shè),,分別是中,,所對(duì)邊的邊長(zhǎng),則直線與的位置關(guān)系是()A.平行 B.重合C.垂直 D.相交但不垂直5.單位正方體ABCD-,黑、白兩螞蟻從點(diǎn)A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設(shè)白、黑螞蟻都走完2020段后各自停止在正方體的某個(gè)頂點(diǎn)處,這時(shí)黑、白兩螞蟻的距離是()A.1 B. C. D.06.橢圓是日常生活中常見(jiàn)的圖形,在圓柱形的玻璃杯中盛半杯水,將杯體傾斜一個(gè)角度,水面的邊界即是橢圓.現(xiàn)有一高度為12厘米,底面半徑為3厘米的圓柱形玻璃杯,且杯中所盛水的體積恰為該玻璃杯容積的一半(玻璃厚度忽略不計(jì)),在玻璃杯傾斜的過(guò)程中(杯中的水不能溢出),杯中水面邊界所形成的橢圓的離心率的取值范圍是()A. B. C. D.7.已知復(fù)數(shù),則對(duì)應(yīng)的點(diǎn)在復(fù)平面內(nèi)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限8.函數(shù)的定義域?yàn)?,集合,則()A. B. C. D.9.設(shè)(是虛數(shù)單位),則()A. B.1 C.2 D.10.若實(shí)數(shù)滿足不等式組,則的最大值為()A. B. C.3 D.211.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.12.已知直線:與圓:交于,兩點(diǎn),與平行的直線與圓交于,兩點(diǎn),且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號(hào)有()A.①② B.①④ C.②③ D.①②④二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足不等式組,則的取值范圍為_(kāi)_______.14.等邊的邊長(zhǎng)為2,則在方向上的投影為_(kāi)_______.15.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是______cm2,體積是_____16.雙曲線的焦距為_(kāi)_________,漸近線方程為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)的內(nèi)角,,的對(duì)邊分別為,,已知,.(1)求;(2)若的面積,求.18.(12分)如圖,在四棱錐中,底面是邊長(zhǎng)為2的菱形,,平面平面,點(diǎn)為棱的中點(diǎn).(Ⅰ)在棱上是否存在一點(diǎn),使得平面,并說(shuō)明理由;(Ⅱ)當(dāng)二面角的余弦值為時(shí),求直線與平面所成的角.19.(12分)在直角坐標(biāo)系中,是過(guò)定點(diǎn)且傾斜角為的直線;在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,取相同單位長(zhǎng)度)中,曲線的極坐標(biāo)方程為.(1)寫出直線的參數(shù)方程,并將曲線的方程化為直角坐標(biāo)方程;(2)若曲線與直線相交于不同的兩點(diǎn),求的取值范圍.20.(12分)已知函數(shù),,若存在實(shí)數(shù)使成立,求實(shí)數(shù)的取值范圍.21.(12分)已知點(diǎn)P在拋物線上,且點(diǎn)P的橫坐標(biāo)為2,以P為圓心,為半徑的圓(O為原點(diǎn)),與拋物線C的準(zhǔn)線交于M,N兩點(diǎn),且.(1)求拋物線C的方程;(2)若拋物線的準(zhǔn)線與y軸的交點(diǎn)為H.過(guò)拋物線焦點(diǎn)F的直線l與拋物線C交于A,B,且,求的值.22.(10分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標(biāo)點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+)=1.(1)求直線l的直角坐標(biāo)方程和曲線C的普通方程;(2)已知點(diǎn)M(2,0),若直線l與曲線C相交于P、Q兩點(diǎn),求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
分析:先畫出滿足約束條件對(duì)應(yīng)的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個(gè)頂點(diǎn),即求出邊界線的交點(diǎn)坐標(biāo),代入目標(biāo)函數(shù)求得最大值.詳解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時(shí),由圖可得當(dāng)過(guò)點(diǎn)時(shí),取得最大值9,故選C.點(diǎn)睛:該題考查的是有關(guān)線性規(guī)劃的問(wèn)題,在求解的過(guò)程中,首先需要正確畫出約束條件對(duì)應(yīng)的可行域,之后根據(jù)目標(biāo)函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個(gè)點(diǎn)是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標(biāo),代入求值,要明確目標(biāo)函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.2.D【解析】
a,b可看成是與和交點(diǎn)的橫坐標(biāo),畫出圖象,數(shù)形結(jié)合處理.【詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.【點(diǎn)睛】本題考查利用函數(shù)圖象比較大小,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.3.D【解析】因甲不參加生物競(jìng)賽,則安排甲參加另外3場(chǎng)比賽或甲學(xué)生不參加任何比賽①當(dāng)甲參加另外3場(chǎng)比賽時(shí),共有?=72種選擇方案;②當(dāng)甲學(xué)生不參加任何比賽時(shí),共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點(diǎn)睛:本題以選擇學(xué)生參加比賽為載體,考查了分類計(jì)數(shù)原理、排列數(shù)與組合數(shù)公式等知識(shí),屬于基礎(chǔ)題.4.C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點(diǎn):直線與直線的位置關(guān)系5.B【解析】
根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過(guò)幾段后又回到起點(diǎn),得到每爬1步回到起點(diǎn),周期為1.計(jì)算黑螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個(gè)點(diǎn)以及計(jì)算白螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個(gè)點(diǎn),即可計(jì)算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過(guò)1段后又回到起點(diǎn),可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點(diǎn);同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點(diǎn),所以它們此時(shí)的距離為.故選B.【點(diǎn)睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問(wèn)題,考查空間想象與推理能力,屬于中等題.6.C【解析】
根據(jù)題意可知當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大,由橢圓的幾何性質(zhì)即可確定此時(shí)橢圓的離心率,進(jìn)而確定離心率的取值范圍.【詳解】當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大.此時(shí)橢圓長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為6,所以橢圓離心率,所以.故選:C【點(diǎn)睛】本題考查了橢圓的定義及其性質(zhì)的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.7.A【解析】
利用復(fù)數(shù)除法運(yùn)算化簡(jiǎn),由此求得對(duì)應(yīng)點(diǎn)所在象限.【詳解】依題意,對(duì)應(yīng)點(diǎn)為,在第一象限.故選A.【點(diǎn)睛】本小題主要考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo)所在象限,屬于基礎(chǔ)題.8.A【解析】
根據(jù)函數(shù)定義域得集合,解對(duì)數(shù)不等式得到集合,然后直接利用交集運(yùn)算求解.【詳解】解:由函數(shù)得,解得,即;又,解得,即,則.故選:A.【點(diǎn)睛】本題考查了交集及其運(yùn)算,考查了函數(shù)定義域的求法,是基礎(chǔ)題.9.A【解析】
先利用復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則求出,即可根據(jù)復(fù)數(shù)的模計(jì)算公式求出.【詳解】∵,∴.故選:A.【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則的應(yīng)用,以及復(fù)數(shù)的模計(jì)算公式的應(yīng)用,屬于容易題.10.C【解析】
作出可行域,直線目標(biāo)函數(shù)對(duì)應(yīng)的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖由射線,線段,射線圍成的陰影部分(含邊界),作直線,平移直線,當(dāng)過(guò)點(diǎn)時(shí),取得最大值1.故選:C.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃問(wèn)題,解題關(guān)鍵是作出可行域,本題要注意可行域不是一個(gè)封閉圖形.11.C【解析】
畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可.【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長(zhǎng)為2,
該幾何體的表面積:.故選C.【點(diǎn)睛】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關(guān)鍵.12.D【解析】
求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時(shí)滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時(shí)滿足條件,根據(jù)點(diǎn)到直線距離可知,①②④滿足條件.故選:D.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,涉及點(diǎn)到直線的距離公式.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
畫出不等式組表示的平面區(qū)域如下圖中陰影部分所示,易知在點(diǎn)處取得最小值,即,所以由圖可知的取值范圍為.14.【解析】
建立直角坐標(biāo)系,結(jié)合向量的坐標(biāo)運(yùn)算求解在方向上的投影即可.【詳解】建立如圖所示的平面直角坐標(biāo)系,由題意可知:,,,則:,,且,,據(jù)此可知在方向上的投影為.【點(diǎn)睛】本題主要考查平面向量數(shù)量積的坐標(biāo)運(yùn)算,向量投影的定義與計(jì)算等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.15.20+45,8【解析】試題分析:由題意得,該幾何體為三棱柱,故其表面積S=2×1體積V=12×4×2×2=8,故填:20+4考點(diǎn):1.三視圖;2.空間幾何體的表面積與體積.16.6【解析】由題得所以焦距,故第一個(gè)空填6.由題得漸近線方程為.故第二個(gè)空填.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2)【解析】
試題分析:(1)根據(jù)余弦定理求出B,帶入條件求出,利用同角三角函數(shù)關(guān)系求其余弦,再利用兩角差的余弦定理即可求出;(2)根據(jù)(1)及面積公式可得,利用正弦定理即可求出.試題解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及題設(shè)條件,得,∴.由,得,∴,∴.點(diǎn)睛:解決三角形中的角邊問(wèn)題時(shí),要根據(jù)條件選擇正余弦定理,將問(wèn)題轉(zhuǎn)化統(tǒng)一為邊的問(wèn)題或角的問(wèn)題,利用三角中兩角和差等公式處理,特別注意內(nèi)角和定理的運(yùn)用,涉及三角形面積最值問(wèn)題時(shí),注意均值不等式的利用,特別求角的時(shí)候,要注意分析角的范圍,才能寫出角的大小.18.(1)見(jiàn)解析(2)【解析】
(Ⅰ)取的中點(diǎn),連結(jié)、,得到故且,進(jìn)而得到,利用線面平行的判定定理,即可證得平面.(Ⅱ)以為坐標(biāo)原點(diǎn)建立如圖空間直角坐標(biāo)系,設(shè),求得平面的法向量為,和平面的法向量,利用向量的夾角公式,求得,進(jìn)而得到為直線與平面所成的角,即可求解.【詳解】(Ⅰ)在棱上存在點(diǎn),使得平面,點(diǎn)為棱的中點(diǎn).理由如下:取的中點(diǎn),連結(jié)、,由題意,且,且,故且.所以,四邊形為平行四邊形.所以,,又平面,平面,所以,平面.(Ⅱ)由題意知為正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以為坐標(biāo)原點(diǎn)建立如圖空間直角坐標(biāo)系,設(shè),則由題意知,,,,,,設(shè)平面的法向量為,則由得,令,則,,所以取,顯然可取平面的法向量,由題意:,所以.由于平面,所以在平面內(nèi)的射影為,所以為直線與平面所成的角,易知在中,,從而,所以直線與平面所成的角為.【點(diǎn)睛】本題考查了立體幾何中的面面垂直的判定和直線與平面所成角的求解問(wèn)題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過(guò)嚴(yán)密推理,明確角的構(gòu)成,著重考查了分析問(wèn)題和解答問(wèn)題的能力.19.(1)(為參數(shù)),;(2)【解析】分析:(1)直線的參數(shù)方程為(為參數(shù)),其中表示之間的距離,而極坐標(biāo)方程可化為,從而的直角方程為.(2)設(shè),則,利用在圓上得到滿足的方程,最后利用韋達(dá)定理就可求出兩條線段的和.詳解:(1)直線的參數(shù)方程為(為參數(shù)).曲線的極坐標(biāo)方程可化為.把,代入曲線的極坐標(biāo)方程可得,即.(2)把直線的參數(shù)方程為(為參數(shù))代入圓的方程可得:.∵曲線與直線相交于不同的兩點(diǎn),∴,∴,又,∴.又,.∴,∵,∴,∴.∴的取值范圍是.點(diǎn)睛:(1)直線的參數(shù)方程有多種形式,其中一種為(為直線的傾斜角,是參數(shù)),這樣的參數(shù)方程中的參數(shù)有明確的幾何意義,它表示之間的距離.(2)直角坐標(biāo)方程轉(zhuǎn)為極坐標(biāo)方程的關(guān)鍵是利用公式,而極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程的關(guān)鍵是利用公式,后者也可以把極坐標(biāo)方程變形盡量產(chǎn)生以便轉(zhuǎn)化.20.【解析】試題分析:先將問(wèn)題“存在實(shí)數(shù)使成立”轉(zhuǎn)化為“求函數(shù)的最大值”,再借助柯西不等式求出的最大值即可獲解.試題解析:存在實(shí)數(shù)使成立,等價(jià)于的最大值大于,因?yàn)椋煽挛鞑坏仁剑?,所以,?dāng)且僅當(dāng)時(shí)取“”,故常數(shù)的取值范圍是.考點(diǎn):柯西不等式即運(yùn)用和轉(zhuǎn)化與化歸的數(shù)學(xué)思想的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025餐飲業(yè)環(huán)保節(jié)能技術(shù)應(yīng)用合作協(xié)議2篇
- 二零二五年度土地承包經(jīng)營(yíng)權(quán)流轉(zhuǎn)與抵押貸款合同
- 二零二五年度人力資源外包與員工信息安全保護(hù)合同2篇
- 二零二五版股權(quán)代持與投資風(fēng)險(xiǎn)控制協(xié)議3篇
- 二零二五年新能源開(kāi)發(fā)違約責(zé)任承擔(dān)詳細(xì)合同3篇
- 二手住宅分期購(gòu)銷協(xié)議示例2024年版版B版
- 2025年度豬場(chǎng)養(yǎng)殖廢棄物資源化利用技術(shù)研發(fā)合作協(xié)議3篇
- 二零二五年度友情債務(wù)確認(rèn)及補(bǔ)充借條合同3篇
- 二零二五年度出口貿(mào)易合同保險(xiǎn)及索賠處理服務(wù)協(xié)議4篇
- 2025年度綠色環(huán)保土方工程承包合同書
- 二零二五年度無(wú)人駕駛車輛測(cè)試合同免責(zé)協(xié)議書
- 2025年湖北華中科技大學(xué)招聘實(shí)驗(yàn)技術(shù)人員52名歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 高三日語(yǔ)一輪復(fù)習(xí)助詞「と」的用法課件
- 毛渣采購(gòu)合同范例
- 2023中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)-注射相關(guān)感染預(yù)防與控制
- 五年級(jí)上冊(cè)小數(shù)遞等式計(jì)算200道及答案
- 2024年廣東高考政治真題考點(diǎn)分布匯 總- 高考政治一輪復(fù)習(xí)
- 燃?xì)夤艿滥甓葯z驗(yàn)報(bào)告
- GB/T 44052-2024液壓傳動(dòng)過(guò)濾器性能特性的標(biāo)識(shí)
- 國(guó)際市場(chǎng)營(yíng)銷環(huán)境案例分析
- 滑雪指導(dǎo)員理論考試復(fù)習(xí)題庫(kù)(含答案)
評(píng)論
0/150
提交評(píng)論