2022屆黑龍江哈爾濱市第十九中學(xué)高考沖刺模擬數(shù)學(xué)試題含解析_第1頁
2022屆黑龍江哈爾濱市第十九中學(xué)高考沖刺模擬數(shù)學(xué)試題含解析_第2頁
2022屆黑龍江哈爾濱市第十九中學(xué)高考沖刺模擬數(shù)學(xué)試題含解析_第3頁
2022屆黑龍江哈爾濱市第十九中學(xué)高考沖刺模擬數(shù)學(xué)試題含解析_第4頁
2022屆黑龍江哈爾濱市第十九中學(xué)高考沖刺模擬數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.定義兩種運(yùn)算“★”與“◆”,對(duì)任意,滿足下列運(yùn)算性質(zhì):①★,◆;②()★★,◆◆,則(◆2020)(2020★2018)的值為()A. B. C. D.2.已知斜率為k的直線l與拋物線交于A,B兩點(diǎn),線段AB的中點(diǎn)為,則斜率k的取值范圍是()A. B. C. D.3.函數(shù)在上單調(diào)遞減,且是偶函數(shù),若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)4.函數(shù),,的部分圖象如圖所示,則函數(shù)表達(dá)式為()A. B.C. D.5.設(shè)雙曲線(a>0,b>0)的一個(gè)焦點(diǎn)為F(c,0)(c>0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y2﹣2cx=0截得的弦長(zhǎng)為2,則該雙曲線的標(biāo)準(zhǔn)方程為()A. B.C. D.6.若是定義域?yàn)榈钠婧瘮?shù),且,則A.的值域?yàn)?B.為周期函數(shù),且6為其一個(gè)周期C.的圖像關(guān)于對(duì)稱 D.函數(shù)的零點(diǎn)有無窮多個(gè)7.已知數(shù)列是公差為的等差數(shù)列,且成等比數(shù)列,則()A.4 B.3 C.2 D.18.已知向量,,設(shè)函數(shù),則下列關(guān)于函數(shù)的性質(zhì)的描述正確的是A.關(guān)于直線對(duì)稱 B.關(guān)于點(diǎn)對(duì)稱C.周期為 D.在上是增函數(shù)9.某幾何體的三視圖如圖所示,則該幾何體中的最長(zhǎng)棱長(zhǎng)為()A. B. C. D.10.正四棱錐的五個(gè)頂點(diǎn)在同一個(gè)球面上,它的底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為,則它的外接球的表面積為()A. B. C. D.11.已知實(shí)數(shù)x,y滿足約束條件,若的最大值為2,則實(shí)數(shù)k的值為()A.1 B. C.2 D.12.三棱錐的各個(gè)頂點(diǎn)都在求的表面上,且是等邊三角形,底面,,,若點(diǎn)在線段上,且,則過點(diǎn)的平面截球所得截面的最小面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,已知圓,圓.直線與圓相切,且與圓相交于,兩點(diǎn),則弦的長(zhǎng)為_________14.已知雙曲線的一條漸近線方程為,則________.15.設(shè)雙曲線的左焦點(diǎn)為,過點(diǎn)且傾斜角為45°的直線與雙曲線的兩條漸近線順次交于,兩點(diǎn)若,則的離心率為________.16.若,則的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左,右焦點(diǎn)分別為,,,M是橢圓E上的一個(gè)動(dòng)點(diǎn),且的面積的最大值為.(1)求橢圓E的標(biāo)準(zhǔn)方程,(2)若,,四邊形ABCD內(nèi)接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.18.(12分)如圖,四棱錐中,四邊形是矩形,,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面平面;(2)求二面角的余弦值.19.(12分)已知函數(shù).(Ⅰ)求函數(shù)的極值;(Ⅱ)若,且,求證:.20.(12分)已知?jiǎng)訄A恒過點(diǎn),且與直線相切.(1)求圓心的軌跡的方程;(2)設(shè)是軌跡上橫坐標(biāo)為2的點(diǎn),的平行線交軌跡于,兩點(diǎn),交軌跡在處的切線于點(diǎn),問:是否存在實(shí)常數(shù)使,若存在,求出的值;若不存在,說明理由.21.(12分)在直角坐標(biāo)平面中,已知的頂點(diǎn),,為平面內(nèi)的動(dòng)點(diǎn),且.(1)求動(dòng)點(diǎn)的軌跡的方程;(2)設(shè)過點(diǎn)且不垂直于軸的直線與交于,兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明:直線過軸上的定點(diǎn).22.(10分)如圖,在中,已知,,,為線段的中點(diǎn),是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時(shí),求的值;(2)當(dāng)時(shí),求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

根據(jù)新運(yùn)算的定義分別得出◆2020和2020★2018的值,可得選項(xiàng).【詳解】由()★★,得(+2)★★,又★,所以★,★,★,,以此類推,2020★2018★2018,又◆◆,◆,所以◆,◆,◆,,以此類推,◆2020,所以(◆2020)(2020★2018),故選:B.【點(diǎn)睛】本題考查定義新運(yùn)算,關(guān)鍵在于理解,運(yùn)用新定義進(jìn)行求值,屬于中檔題.2.C【解析】

設(shè),,,,設(shè)直線的方程為:,與拋物線方程聯(lián)立,由△得,利用韋達(dá)定理結(jié)合已知條件得,,代入上式即可求出的取值范圍.【詳解】設(shè)直線的方程為:,,,,,聯(lián)立方程,消去得:,△,,且,,,線段的中點(diǎn)為,,,,,,,,把代入,得,,,故選:【點(diǎn)睛】本題主要考查了直線與拋物線的位置關(guān)系,考查了韋達(dá)定理的應(yīng)用,屬于中檔題.3.B【解析】

根據(jù)題意分析的圖像關(guān)于直線對(duì)稱,即可得到的單調(diào)區(qū)間,利用對(duì)稱性以及單調(diào)性即可得到的取值范圍。【詳解】根據(jù)題意,函數(shù)滿足是偶函數(shù),則函數(shù)的圖像關(guān)于直線對(duì)稱,若函數(shù)在上單調(diào)遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【點(diǎn)睛】本題考查偶函數(shù)的性質(zhì),以及函數(shù)單調(diào)性的應(yīng)用,有一定綜合性,屬于中檔題。4.A【解析】

根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點(diǎn)求出,化簡(jiǎn)即得所求.【詳解】由圖像知,,,解得,因?yàn)楹瘮?shù)過點(diǎn),所以,,即,解得,因?yàn)?,所以?故選:A【點(diǎn)睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.5.C【解析】

由題得,,又,聯(lián)立解方程組即可得,,進(jìn)而得出雙曲線方程.【詳解】由題得①又該雙曲線的一條漸近線方程為,且被圓x2+y2﹣2cx=0截得的弦長(zhǎng)為2,所以②又③由①②③可得:,,所以雙曲線的標(biāo)準(zhǔn)方程為.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),圓的方程的有關(guān)計(jì)算,考查了學(xué)生的計(jì)算能力.6.D【解析】

運(yùn)用函數(shù)的奇偶性定義,周期性定義,根據(jù)表達(dá)式判斷即可.【詳解】是定義域?yàn)榈钠婧瘮?shù),則,,又,,即是以4為周期的函數(shù),,所以函數(shù)的零點(diǎn)有無窮多個(gè);因?yàn)?,,令,則,即,所以的圖象關(guān)于對(duì)稱,由題意無法求出的值域,所以本題答案為D.【點(diǎn)睛】本題綜合考查了函數(shù)的性質(zhì),主要是抽象函數(shù)的性質(zhì),運(yùn)用數(shù)學(xué)式子判斷得出結(jié)論是關(guān)鍵.7.A【解析】

根據(jù)等差數(shù)列和等比數(shù)列公式直接計(jì)算得到答案.【詳解】由成等比數(shù)列得,即,已知,解得.故選:.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列的基本量的計(jì)算,意在考查學(xué)生的計(jì)算能力.8.D【解析】

當(dāng)時(shí),,∴f(x)不關(guān)于直線對(duì)稱;當(dāng)時(shí),,∴f(x)關(guān)于點(diǎn)對(duì)稱;f(x)得周期,當(dāng)時(shí),,∴f(x)在上是增函數(shù).本題選擇D選項(xiàng).9.C【解析】

根據(jù)三視圖,可得該幾何體是一個(gè)三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長(zhǎng)比較下結(jié)論.【詳解】如圖所示:由三視圖得:該幾何體是一個(gè)三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長(zhǎng)棱長(zhǎng)為.故選:C【點(diǎn)睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.10.C【解析】

如圖所示,在平面的投影為正方形的中心,故球心在上,計(jì)算長(zhǎng)度,設(shè)球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設(shè)球半徑為,則,解得,故.故選:.【點(diǎn)睛】本題考查了四棱錐的外接球問題,意在考查學(xué)生的空間想象能力和計(jì)算能力.11.B【解析】

畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當(dāng)時(shí),x在點(diǎn)B處取得最大值,即,得;當(dāng)時(shí),z在點(diǎn)C處取得最大值,即,得(舍去).故選:B.【點(diǎn)睛】本題考查由目標(biāo)函數(shù)最值求解參數(shù)值,數(shù)形結(jié)合思想,分類討論是解題的關(guān)鍵,屬于中檔題.12.A【解析】

由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點(diǎn)D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設(shè)三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設(shè)三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點(diǎn)E,由SA=4,AD=3SD,得DE=1,所以O(shè)D=.則過點(diǎn)D的平面截球O所得截面圓的最小半徑為所以過點(diǎn)D的平面截球O所得截面的最小面積為故選:A【點(diǎn)睛】本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

利用直線與圓相切求出斜率,得到直線的方程,幾何法求出【詳解】解:直線與圓相切,圓心為由,得或,當(dāng)時(shí),到直線的距離,不成立,當(dāng)時(shí),與圓相交于,兩點(diǎn),到直線的距離,故答案為.【點(diǎn)睛】考查直線與圓的位置關(guān)系,相切和相交問題,屬于中檔題.14.【解析】

根據(jù)雙曲線的標(biāo)準(zhǔn)方程寫出雙曲線的漸近線方程,結(jié)合題意可求得正實(shí)數(shù)的值.【詳解】雙曲線的漸近線方程為,由于該雙曲線的一條漸近線方程為,,解得.故答案為:.【點(diǎn)睛】本題考查利用雙曲線的漸近線方程求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.15.【解析】

設(shè)直線的方程為,與聯(lián)立得到A點(diǎn)坐標(biāo),由得,,代入可得,即得解.【詳解】由題意,直線的方程為,與聯(lián)立得,,由得,,從而,即,從而離心率.故答案為:【點(diǎn)睛】本題考查了雙曲線的離心率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.16.【解析】

由基本不等式,可得到,然后利用,可得到最小值,要注意等號(hào)取得的條件?!驹斀狻坑深}意,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以當(dāng)時(shí),取得最小值.【點(diǎn)睛】利用基本不等式求最值必須具備三個(gè)條件:①各項(xiàng)都是正數(shù);②和(或積)為定值;③等號(hào)取得的條件。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析【解析】

(1)設(shè)橢圓E的半焦距為c,由題意可知,當(dāng)M為橢圓E的上頂點(diǎn)或下頂點(diǎn)時(shí),的面積取得最大值,求出,即可得答案;(2)根據(jù)題意可知,,因?yàn)椋钥稍O(shè)直線CD的方程為,將直線代入曲線的方程,利用韋達(dá)定理得到的關(guān)系,再代入斜率公式可證得為定值.【詳解】(1)設(shè)橢圓E的半焦距為c,由題意可知,當(dāng)M為橢圓E的上頂點(diǎn)或下頂點(diǎn)時(shí),的面積取得最大值.所以,所以,,故橢圓E的標(biāo)準(zhǔn)方程為.(2)根據(jù)題意可知,,因?yàn)椋钥稍O(shè)直線CD的方程為.由,消去y可得,所以,即.直線AD的斜率,直線BC的斜率,所以,故為定值.【點(diǎn)睛】本題考查橢圓標(biāo)準(zhǔn)方程的求解、橢圓中的定值問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意坐標(biāo)法的運(yùn)用.18.(1)見解析;(2)【解析】

(1)取中點(diǎn),中點(diǎn),連接,,.設(shè)交于,則為的中點(diǎn),連接.通過證明,證得平面,由此證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的余弦值.【詳解】(1)取中點(diǎn),中點(diǎn),連接,,.設(shè)交于,則為的中點(diǎn),連接.設(shè),則,,∴.由已知,,∴平面,∴.∵,∴,∵,∴平面,∵平面,∴平面平面.(2)由(1)及已知可得平面,建立如圖所示的空間坐標(biāo)系,設(shè),則,,,,,,,,設(shè)平面的法向量為,∴,令得.設(shè)平面的法向量為,∴,令得,∴,∴二面角的余弦值為.【點(diǎn)睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19.(Ⅰ)極大值為:,無極小值;(Ⅱ)見解析.【解析】

(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可求出函數(shù)的極值;(Ⅱ)得到,根據(jù)函數(shù)的單調(diào)性問題轉(zhuǎn)化為證明,即證,令,根據(jù)函數(shù)的單調(diào)性證明即可.【詳解】(Ⅰ)的定義域?yàn)榍伊?,得;令,得在上單調(diào)遞增,在上單調(diào)遞減函數(shù)的極大值為,無極小值(Ⅱ),,即由(Ⅰ)知在上單調(diào)遞增,在上單調(diào)遞減且,則要證,即證,即證,即證即證由于,即,即證令則恒成立在遞增在恒成立【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,考查不等式的證明,考查運(yùn)算求解能力及化歸與轉(zhuǎn)化思想,關(guān)鍵是能夠構(gòu)造出合適的函數(shù),將問題轉(zhuǎn)化為函數(shù)最值的求解問題,屬于難題.20.(1);(2)存在,.【解析】

(1)根據(jù)拋物線的定義,容易知其軌跡為拋物線;結(jié)合已知點(diǎn)的坐標(biāo),即可求得方程;(2)由拋物線方程求得點(diǎn)的坐標(biāo),設(shè)出直線的方程,利用導(dǎo)數(shù)求得點(diǎn)的坐標(biāo),聯(lián)立直線的方程和拋物線方程,結(jié)合韋達(dá)定理,求得,進(jìn)而求得與之間的大小關(guān)系,即可求得參數(shù).【詳解】(1)由題意得,點(diǎn)與點(diǎn)的距離始終等于點(diǎn)到直線的距離,由拋物線的定義知圓心的軌跡是以點(diǎn)為焦點(diǎn),直線為準(zhǔn)線的拋物線,則,.∴圓心的軌跡方程為.(2)因?yàn)槭擒壽E上橫坐標(biāo)為2的點(diǎn),由(1)不妨取,所以直線的斜率為1.因?yàn)椋栽O(shè)直線的方程為,.由,得,則在點(diǎn)處的切線斜率為2,所以在點(diǎn)處的切線方程為.由得所以,所以.由消去得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論