2023屆湖南邵陽市區(qū)數(shù)學九年級上冊期末經(jīng)典試題含解析_第1頁
2023屆湖南邵陽市區(qū)數(shù)學九年級上冊期末經(jīng)典試題含解析_第2頁
2023屆湖南邵陽市區(qū)數(shù)學九年級上冊期末經(jīng)典試題含解析_第3頁
2023屆湖南邵陽市區(qū)數(shù)學九年級上冊期末經(jīng)典試題含解析_第4頁
2023屆湖南邵陽市區(qū)數(shù)學九年級上冊期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.我們研究過的圖形中,圓的任何一對平行切線的距離總是相等的,所以圓是“等寬曲線”.除了圓以外,還有一些幾何圖形也是“等寬曲線”,如勒洛三角形(如圖),它是分別以等邊三角形的每個頂點為圓心,以邊長為半徑,在另兩個頂點間畫一段圓弧,三段圓弧圍成的曲邊三角形.圖是等寬的勒洛三角形和圓形滾木的截面圖.圖圖有如下四個結論:①勒洛三角形是中心對稱圖形②圖中,點到上任意一點的距離都相等③圖中,勒洛三角形的周長與圓的周長相等④使用截面是勒洛三角形的滾木來搬運東西,會發(fā)生上下抖動上述結論中,所有正確結論的序號是()A.①② B.②③ C.②④ D.③④2.神舟十號飛船是我國“神州”系列飛船之一,每小時飛行約28000公里,將28000用科學記數(shù)法表示應為()A.2.8×103 B.28×103 C.2.8×104 D.0.28×1053.若式子在實數(shù)范圍內(nèi)有意義,則的取值范圍是()A. B. C. D.4.拋物線y=(x﹣2)2+3的頂點坐標是()A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)5.方程x2﹣2x+3=0的根的情況是()A.有兩個相等的實數(shù)根 B.只有一個實數(shù)根C.沒有實數(shù)根 D.有兩個不相等的實數(shù)根6.已知正比例函數(shù)的函數(shù)值隨自變量的增大而增大,則二次函數(shù)的圖象與軸的交點個數(shù)為()A.2 B.1 C.0 D.無法確定7.一個不透明的袋子中裝有10個只有顏色不同的小球,其中2個紅球,3個黃球,5個綠球,從袋子中任意摸出一個球,則摸出的球是綠球的概率為()A. B. C. D.8.畢業(yè)前期,某班的全體學生互贈賀卡,共贈賀卡1980張.設某班共有名學生,那么所列方程為()A. B.C. D.9.某魚塘里養(yǎng)了100條鯉魚、若干條草魚和50條羅非魚,通過多次捕撈實驗后發(fā)現(xiàn),捕撈到草魚的頻率穩(wěn)定在0.5左右,可估計該魚塘中草魚的數(shù)量為()A.150 B.100 C.50 D.20010.給出下列函數(shù),其中y隨x的增大而減小的函數(shù)是()①y=2x;②y=﹣2x+1;③y=(x<0);④y=x2(x<1).A.①③④ B.②③④ C.②④ D.②③二、填空題(每小題3分,共24分)11.如圖,在矩形中,.若將繞點旋轉(zhuǎn)后,點落在延長線上的點處,點經(jīng)過的路徑為,則圖中陰影部分的面積為______.12.拋物線y=9x2﹣px+4與x軸只有一個公共點,則p的值是_____.13.如圖,在置于平面直角坐標系中,點的坐標為,點的坐標為,點是內(nèi)切圓的圓心.將沿軸的正方向作無滑動滾動,使它的三邊依次與軸重合,第一次滾動后圓心為,第二次滾動后圓心為,…,依此規(guī)律,第2020次滾動后,內(nèi)切圓的圓心的坐標是__________.14.拋物線y=(x+2)2-2的頂點坐標是________.15.已知關于x的一元二次方程(a-1)x2-x+a2-1=0的一個根是0,那么a的值為.16.有一個正十二面體,12個面上分別寫有1~12這12個整數(shù),投擲這個正十二面體一次,向上一面的數(shù)字是3的倍數(shù)或4的倍數(shù)的概率是.17.若△ABC∽△A′B′C′,且,△ABC的周長為12cm,則△A′B′C′的周長為_____________.18.一元二次方程的解是.三、解答題(共66分)19.(10分)某校為響應全民閱讀活動,利用節(jié)假日面向社會開放學校圖書館,據(jù)統(tǒng)計,第一個月進館200人次,此后進館人次逐月增加,到第三個月進館達到288人次,若進館人次的月平均增長率相同.(1)求進館人次的月平均增長率;(2)因條件限制,學校圖書館每月接納能力不得超過400人次,若進館人次的月平均增長率不變,到第幾個月時,進館人數(shù)將超過學校圖書館的接納能力,并說明理由.20.(6分)為測量某特種車輛的性能,研究制定了行駛指數(shù),而的大小與平均速度和行駛路程有關(不考慮其他因素),由兩部分的和組成,一部分與成正比,另一部分與成正比.在實驗中得到了表格中的數(shù)據(jù):速度路程指數(shù)(1)用含和的式子表示;(2)當行駛指數(shù)為,而行駛路程為時,求平均速度的值;(3)當行駛路程為時,若行駛指數(shù)值最大,求平均速度的值.21.(6分)如圖,在正方形中,,點在正方形邊上沿運動(含端點),連接,以為邊,在線段右側(cè)作正方形,連接、.小穎根據(jù)學習函數(shù)的經(jīng)驗,在點運動過程中,對線段、、的長度之間的關系進行了探究.下面是小穎的探究過程,請補充完整:(1)對于點在、邊上的不同位置,畫圖、測量,得到了線段、、的長度的幾組值,如下表:位置位置位置位置位置位置位置在、和的長度這三個量中,確定的長度是自變量,的長度和的長度都是這個自變量的函數(shù).(2)在同一平面直角坐標系中,畫出(1)中所確定的函數(shù)的圖象:(3)結合函數(shù)圖像,解決問題:當為等腰三角形時,的長約為22.(8分)解方程:x2+x﹣3=1.23.(8分)如圖,在平行四邊形ABCD中,點E,F(xiàn),G,H分別在邊AB,BC,CD,DA上,AE=CG,AH=CF,且EG平分∠HEF.(1)求證:△AEH≌△CGF.(2)若∠EFG=90°.求證:四邊形EFGH是正方形.24.(8分)如圖,已知AB是⊙O的直徑,BD是⊙O的弦,延長BD到C,使DC=BD,連接AC,過點D作DE⊥AC,垂足為E.(1)求證:AB=AC;(2)求證:DE是⊙O的切線;(3)若⊙O的半徑為6,∠BAC=60°,則DE=________.25.(10分)如圖,點A.B.C分別是⊙O上的點,∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點,且AP=AC.(1)求證:AP是⊙O的切線;(2)求PD的長.26.(10分)已知二次函數(shù)y=x2+bx+c中,函數(shù)y與自變量x的部分對應值如下表:x…01234…y…5212n…(1)表中n的值為;(2)當x為何值時,y有最小值,最小值是多少?(3)若A(m1,y1),B(m+1,y2)兩點都在該函數(shù)的圖象上,且m>2,試比較y1與y2的大?。?/p>

參考答案一、選擇題(每小題3分,共30分)1、B【分析】逐一對選項進行分析即可.【詳解】①勒洛三角形不是中心對稱圖形,故①錯誤;②圖中,點到上任意一點的距離都相等,故②正確;③圖中,設圓的半徑為r∴勒洛三角形的周長=圓的周長為∴勒洛三角形的周長與圓的周長相等,故③正確;④使用截面是勒洛三角形的滾木來搬運東西,不會發(fā)生上下抖動,故④錯誤故選B【點睛】本題主要考查中心對稱圖形,弧長公式等,掌握中心對稱圖形和弧長公式是解題的關鍵.2、C【解析】試題分析:28000=1.1×1.故選C.考點:科學記數(shù)法—表示較大的數(shù).3、C【解析】直接利用二次根式的定義即可得出答案.【詳解】∵式子在實數(shù)范圍內(nèi)有意義,∴x的取值范圍是:x>1.故選:C.【點睛】本題考查了二次根式有意義的條件,正確把握定義是解答本題的關鍵.4、A【分析】根據(jù)拋物線的頂點式可直接得到頂點坐標.【詳解】解:y=(x﹣2)2+3是拋物線的頂點式方程,根據(jù)頂點式的坐標特點可知,頂點坐標為(2,3).故選:A.【點睛】本題考查了二次函數(shù)的頂點式與頂點坐標,頂點式y(tǒng)=(x-h)2+k,頂點坐標為(h,k),對稱軸為直線x=h,難度不大.5、C【解析】試題分析:利用根的判別式進行判斷.解:∵∴此方程無實數(shù)根.故選C.6、A【分析】根據(jù)正比例函數(shù)的性質(zhì)可以判斷k的正負情況,然后根據(jù)△的正負,即可判斷二次函數(shù)的圖象與軸的交點個數(shù),本題得以解決.【詳解】∵正比例函數(shù)的函數(shù)值隨自變量的增大而增大,∴k>0,∵二次函數(shù)為∴△=[?2(k+1)]2?4×1×(k2?1)=8k+8>0,∴二次函數(shù)為與軸的交點個數(shù)為2,故選:A.【點睛】本題考查二次函數(shù)與x軸的交點個數(shù)和正比例函數(shù)的性質(zhì),解答本題的關鍵是明確題意,利用根的判別式來解答.7、D【解析】隨機事件A的概率P(A)=事件A可能出現(xiàn)的結果數(shù)÷所有可能出現(xiàn)的結果數(shù).【詳解】解:綠球的概率:P==,故選:D.【點睛】本題考查概率相關概念,熟練運用概率公式計算是解題的關鍵.8、D【分析】根據(jù)題意得:每人要贈送(x-1)張賀卡,有x個人,然后根據(jù)題意可列出方程:(x-1)x=1.【詳解】解:根據(jù)題意得:每人要贈送(x-1)張賀卡,有x個人,

∴全班共送:(x-1)x=1,

故選:D.【點睛】此題主要考查了由實際問題抽象出一元二次方程,本題要注意讀清題意,弄清楚每人要贈送(x-1)張賀卡,有x個人是解決問題的關鍵.9、A【分析】根據(jù)大量重復試驗中的頻率估計出概率,利用概率公式求得草魚的數(shù)量即可.【詳解】∵通過多次捕撈實驗后發(fā)現(xiàn),捕撈到草魚的頻率穩(wěn)定在0.5左右,∴捕撈到草魚的概率約為0.5,設有草魚x條,根據(jù)題意得:=0.5,解得:x=150,故選:A.【點睛】本題考查用樣本估計總體,解題的關鍵是明確題意,由草魚出現(xiàn)的頻率可以計算出魚的數(shù)量.10、D【解析】分別根據(jù)一次函數(shù)、二次函數(shù)及反比例函數(shù)的增減性進行解答即可【詳解】解:①∵y=2x中k=2>0,∴y隨x的增大而增大,故本小題錯誤;

②∵y=-2x+1中k=-2<0,∴y隨x的增大而減小,故本小題正確;

③∵y=(x<0)中k=2>0,∴x<0時,y隨x的增大而減小,故本小題正確;

④∵y=x2(x<1)中x<1,∴當0<x<1時,y隨x的增大而增大,故本小題錯誤.

故選D.【點睛】本題考查的是反比例函數(shù)的性質(zhì),熟知一次函數(shù)、二次函數(shù)及反比例函數(shù)的增減性是解答此題的關鍵.二、填空題(每小題3分,共24分)11、【分析】先利用直角三角形的性質(zhì)和勾股定理求出BD和BC的長,再求出和扇形BDE的面積,兩者作差即可得.【詳解】由矩形的性質(zhì)得:的面積為扇形BDE所對的圓心角為,所在圓的半徑為BD則扇形BDE的面積為所以圖中陰影部分的面積為故答案為:.【點睛】本題考查了矩形的性質(zhì)、直角三角形的性質(zhì)、勾股定理、旋轉(zhuǎn)的性質(zhì)、扇形的面積公式,這是一道基礎類綜合題,求出扇形BDE的面積是解題關鍵.12、±1【解析】試題解析:拋物線與x軸只有一個交點,則△=b2-4ac=0,故:p2-4×9×4=0,解得p=±1.故答案為±1.13、(8081,1)【分析】由勾股定理得出AB=,得出Rt△OAB內(nèi)切圓的半徑==1,因此P的坐標為(1,1),由題意得出P3的坐標(3+5+4+1,1),得出規(guī)律:每滾動3次一個循環(huán),由2020÷3=673…1,即可得出結果.【詳解】解:∵點A的坐標為(0,4),點B的坐標為(3,0),∴OA=4,OB=3,∴AB=∴Rt△OAB內(nèi)切圓的半徑==1,∴P的坐標為(1,1),P2的坐標為(3+5+4-1,1),即(11,1)∵將Rt△OAB沿x軸的正方向作無滑動滾動,使它的三邊依次與x軸重合,第一次滾動后圓心為P1,第二次滾動后圓心為P2,…,設P1的橫坐標為x,根據(jù)切線長定理可得5-(x-3)+3-(x-3)=4解得:x=5∴P1的坐標為(3+2,1)即(5,1)∴P3(3+5+4+1,1),即(13,1),每滾動3次一個循環(huán),∵2020÷3=673…1,∴第2020次滾動后,Rt△OAB內(nèi)切圓的圓心P2020的橫坐標是673×(3+5+4)+5,即P2020的橫坐標是8081,∴P2020的坐標是(8081,1);故答案為:(8081,1).【點睛】本題考查了三角形的內(nèi)切圓與內(nèi)心、切線長定理、勾股定理、坐標與圖形性質(zhì)等知識;根據(jù)題意得出規(guī)律是解題的關鍵.14、(-2,-2)【分析】由題意直接利用頂點式的特點,即可求出拋物線的頂點坐標.【詳解】解:∵y=(x+2)2-2是拋物線的頂點式,∴拋物線的頂點坐標為(-2,-2).故答案為:(-2,-2).【點睛】本題主要考查的是二次函數(shù)的性質(zhì),掌握二次函數(shù)頂點式的特征是解題的關鍵.15、-1【解析】試題分析:把代入方程,即可得到關于a的方程,再結合二次項系數(shù)不能為0,即可得到結果.由題意得,解得,則考點:本題考查的是一元二次方程的根即方程的解的定義點評:解答本題的關鍵是熟練掌握一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.同時注意一元二次方程的二次項系數(shù)不能為0.16、【詳解】解:這個正十二面體,12個面上分別寫有1~12這12個整數(shù),其中是3的倍數(shù)或4的倍數(shù)的3,6,9,12,4,8,共6種情況,故向上一面的數(shù)字是3的倍數(shù)或4的倍數(shù)的概率是6/12=故答案為:.17、16cm【分析】根據(jù)相似三角形周長的比等于相似比求解.【詳解】解:∵△ABC∽△A′B′C′,且,即相似三角形的相似比為,

∵△ABC的周長為12cm

∴△A′B′C′的周長為12÷=16cm.故答案為:16.【點睛】此題考查相似三角形的性質(zhì),解題關鍵在于掌握相似三角形周長的比等于相似比.18、±1.【解析】試題分析:∵x1-4=0∴x=±1.考點:解一元二次方程-直接開平方法.三、解答題(共66分)19、(1)進館人次的月平均增長率為20%;(2)到第五個月時,進館人數(shù)將超過學校圖書館的接納能力,見解析【分析】(1)設進館人次的月平均增長率為x,根據(jù)第三個月進館達到288次,列方程求解;(2)根據(jù)(1)所計算出的月平均增長率,計算出第五個月的進館人次,再與400比較大小即可.【詳解】(1)設進館人次的月平均增長率為x,根據(jù)題意,得:200(1+x)2=288解得:x1=0.2,x2=﹣2.2(舍去).答:進館人次的月平均增長率為20%.(2)第四個月進館人數(shù)為288(1+0.2)=345.6(人次),第五個月進館人數(shù)為288(1+0.2)2=414.1(人次),由于400<414.1.答:到第五個月時,進館人數(shù)將超過學校圖書館的接納能力.【點睛】本題考查了一元二次方程的應用-增長率問題,列出方程是解答本題的關鍵.本題難度適中,屬于中檔題.20、(1);(2)50km/h;(3)90km/h.【分析】(1)設K=mv2+nsv,則P=mv2+nsv+1000,利用待定系數(shù)法求解可得;

(2)將P=500代入(1)中解析式,解方程可得;

(3)將s=180代入解析式后,配方成頂點式可得最值情況.【詳解】解:(1)設K=mv2+nsv,則P=mv2+nsv+1000,由題意得:,整理得:,解得:,則P=﹣v2+sv+1000;(2)根據(jù)題意得﹣v2+40v+1000=500,整理得:v2﹣40v﹣500=0,解得:v=﹣10(舍)或v=50,答:平均速度為50km/h;(3)當s=180時,P=﹣v2+180v+1000=﹣(v﹣90)2+9100,∴當v=90時,P最大=9100,答:若行駛指數(shù)值最大,平均速度的值為90km/h.【點睛】本題主要考查待定系數(shù)法求函數(shù)解析式、解二元一次方程組、解一元二次方程的能力及二次函數(shù)的性質(zhì),熟練掌握待定系數(shù)法求得函數(shù)解析式是解題的關鍵.21、(1);(2)畫圖見解析;(3)或或【分析】(1)根據(jù)表格的數(shù)據(jù),結合自變量與函數(shù)的定義,即可得到答案;(2)根據(jù)列表、描點、連線,即可得到函數(shù)圖像;(3)可分為AE=DF,DF=DG,AE=DG,結合圖像,即可得到答案.【詳解】解:(1)根據(jù)表格可知,從0開始,而且不斷增大,則DG是自變量;和隨著DG的變化而變化,則AE和DF都是DG的函數(shù);故答案為:,,.(2)函數(shù)圖像,如圖所示:(3)∵為等腰三角形,則可分為:AE=DF或DF=DG或AE=DG,三種情況;根據(jù)表格和函數(shù)圖像可知,①當AE=DG=時,為等腰三角形;②當AE=時,DF=DG=5.00,為等腰三角形;③當AE=DF=時,為等腰三角形;故答案為:或或.【點睛】本題考查了函數(shù)的定義,自變量的定義,畫函數(shù)圖像,以及等腰三角形的定義,解題的關鍵是掌握函數(shù)的定義,準確畫出函數(shù)圖像.22、x1=-1+132,x2=【解析】利用公式法解方程即可.【詳解】∵a=1,b=1,c=﹣3,∴b2﹣4ac=1+12=13>1,∴x=﹣1∴x1=-1+132,x2=【點睛】本題主要考查解一元二次方程,熟練掌握一元二次方程的幾種解法是解答的關鍵.23、(1)證明見解析;(2)證明見解析.【分析】(1)根據(jù)全等三角形的判定定理SAS證得結論;(2)先證明四邊形EFGH是平行四邊形,再證明有一組鄰邊相等,然后結合∠EFG=90°,即可證得該平行四邊形是正方形.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴∠A=∠C.在△AEH與△CGF中,,∴△AEH≌△CGF(SAS);(2)∵四邊形ABCD是平行四邊形,∴AD=BC,AB=CD,∠B=∠D.∵AE=CG,AH=CF,∴EB=DG,HD=BF.∴△BEF≌△DGH(SAS),∴EF=HG.又∵△AEH≌△CGF,∴EH=GF.∴四邊形HEFG為平行四邊形.∴EH∥FG,∴∠HEG=∠FGE.∵EG平分∠HEF,∴∠HEG=∠FEG,∴∠FGE=∠FEG,∴EF=GF,∴平行四邊形EFGH是菱形.又∵∠EFG=90°,∴平行四邊形EFGH是正方形.【點睛】本題主要考查了四邊形的綜合性問題,關鍵要注意正方形和菱形的性質(zhì)定理,結合考慮三角形的全等的證明,這是中考的必考點,必須熟練掌握.24、(1)見解析;(2)見解析;(3).【分析】(1)連接AD,由直徑所對的圓周角度數(shù)及中點可證AD是BC的垂直平分線,根據(jù)線段垂直平分線的性質(zhì)可得結論;(2)連接OD,由中位線的性質(zhì)可得OD∥AC,由平行的性質(zhì)與切線的判定可證;(3)易知是等邊三角形,由等邊三角形的性質(zhì)可得CB長及度數(shù),利用直角三角形30度角的性質(zhì)及勾股定理可得結果.【詳解】(1)連接AD.∵AB是⊙O的直徑,∴∠ADB=90°.又∵DC=BD,AD是BC的垂直平分線∴AB=AC.(2)連接OD.∵DE⊥AC,∴∠CED=90°.∵O為AB中點,D為BC中點,∴OD∥AC.∴∠ODE=∠CED=90°.∴DE是⊙O的切線.(3)由(1)得是等邊三角形在中,根據(jù)勾股定理得【點睛】本題考查了圓與三角形的綜合,涉及的知識點主要有圓的切線的判定、圓周角定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論