版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),,若存在實(shí)數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.2.向量,,且,則()A. B. C. D.3.已知數(shù)列中,,若對(duì)于任意的,不等式恒成立,則實(shí)數(shù)的取值范圍為()A. B.C. D.4.設(shè)實(shí)數(shù)、滿足約束條件,則的最小值為()A.2 B.24 C.16 D.145.若,則“”的一個(gè)充分不必要條件是A. B.C.且 D.或6.過(guò)拋物線的焦點(diǎn)且與的對(duì)稱軸垂直的直線與交于,兩點(diǎn),,為的準(zhǔn)線上的一點(diǎn),則的面積為()A.1 B.2 C.4 D.87.已知數(shù)列滿足,且,則的值是()A. B. C.4 D.8.設(shè),則,則()A. B. C. D.9.已知我市某居民小區(qū)戶主人數(shù)和戶主對(duì)戶型結(jié)構(gòu)的滿意率分別如圖和如圖所示,為了解該小區(qū)戶主對(duì)戶型結(jié)構(gòu)的滿意程度,用分層抽樣的方法抽取的戶主進(jìn)行調(diào)查,則樣本容量和抽取的戶主對(duì)四居室滿意的人數(shù)分別為A.240,18 B.200,20C.240,20 D.200,1810.的展開(kāi)式中的項(xiàng)的系數(shù)為()A.120 B.80 C.60 D.4011.設(shè)拋物線上一點(diǎn)到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.312.已知數(shù)列為等比數(shù)列,若,且,則()A. B.或 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐P-ABC中,,,,三個(gè)側(cè)面與底面所成的角均為,三棱錐的內(nèi)切球的表面積為_(kāi)________.14.已知,滿足約束條件,則的最小值為_(kāi)_________.15.已知,滿足不等式組,則的取值范圍為_(kāi)_______.16.設(shè)函數(shù),若對(duì)于任意的,∈[2,,≠,不等式恒成立,則實(shí)數(shù)a的取值范圍是.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的離心率為,且過(guò)點(diǎn).(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)是橢圓上且不在軸上的一個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),過(guò)右焦點(diǎn)作的平行線交橢圓于、兩個(gè)不同的點(diǎn),求的值.18.(12分)如圖,四棱錐E﹣ABCD的側(cè)棱DE與四棱錐F﹣ABCD的側(cè)棱BF都與底面ABCD垂直,,//,.(1)證明://平面BCE.(2)設(shè)平面ABF與平面CDF所成的二面角為θ,求.19.(12分)在,角、、所對(duì)的邊分別為、、,已知.(1)求的值;(2)若,邊上的中線,求的面積.20.(12分)已知橢圓的離心率為,且過(guò)點(diǎn),點(diǎn)在第一象限,為左頂點(diǎn),為下頂點(diǎn),交軸于點(diǎn),交軸于點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若,求點(diǎn)的坐標(biāo).21.(12分)已知二階矩陣A=abcd,矩陣A屬于特征值λ1=-1的一個(gè)特征向量為α122.(10分)某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨(dú)立的從五所高校中任選2所.(1)求甲、乙、丙三名同學(xué)都選高校的概率;(2)若已知甲同學(xué)特別喜歡高校,他必選校,另在四校中再隨機(jī)選1所;而同學(xué)乙和丙對(duì)五所高校沒(méi)有偏愛(ài),因此他們每人在五所高校中隨機(jī)選2所.(i)求甲同學(xué)選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學(xué)中選高校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)實(shí)數(shù)滿足的等量關(guān)系,代入后將方程變形,構(gòu)造函數(shù),并由導(dǎo)函數(shù)求得的最大值;由基本不等式可求得的最小值,結(jié)合存在性問(wèn)題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調(diào)遞增,在上單調(diào)遞減,∴,而,當(dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,∴,∴.故選:A.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在求函數(shù)最值中的應(yīng)用,由基本不等式求函數(shù)的最值,存在性成立問(wèn)題的解法,屬于中檔題.2、D【解析】
根據(jù)向量平行的坐標(biāo)運(yùn)算以及誘導(dǎo)公式,即可得出答案.【詳解】故選:D【點(diǎn)睛】本題主要考查了由向量平行求參數(shù)以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.3、B【解析】
先根據(jù)題意,對(duì)原式進(jìn)行化簡(jiǎn)可得,然后利用累加法求得,然后不等式恒成立轉(zhuǎn)化為恒成立,再利用函數(shù)性質(zhì)解不等式即可得出答案.【詳解】由題,即由累加法可得:即對(duì)于任意的,不等式恒成立即令可得且即可得或故選B【點(diǎn)睛】本題主要考查了數(shù)列的通項(xiàng)的求法以及函數(shù)的性質(zhì)的運(yùn)用,屬于綜合性較強(qiáng)的題目,解題的關(guān)鍵是能夠由遞推數(shù)列求出通項(xiàng)公式和后面的轉(zhuǎn)化函數(shù),屬于難題.4、D【解析】
做出滿足條件的可行域,根據(jù)圖形即可求解.【詳解】做出滿足的可行域,如下圖陰影部分,根據(jù)圖象,當(dāng)目標(biāo)函數(shù)過(guò)點(diǎn)時(shí),取得最小值,由,解得,即,所以的最小值為.故選:D.【點(diǎn)睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標(biāo)函數(shù)的最值,屬于基礎(chǔ)題.5、C【解析】,∴,當(dāng)且僅當(dāng)時(shí)取等號(hào).故“且”是“”的充分不必要條件.選C.6、C【解析】
設(shè)拋物線的解析式,得焦點(diǎn)為,對(duì)稱軸為軸,準(zhǔn)線為,這樣可設(shè)點(diǎn)坐標(biāo)為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設(shè)拋物線的解析式,則焦點(diǎn)為,對(duì)稱軸為軸,準(zhǔn)線為,∵直線經(jīng)過(guò)拋物線的焦點(diǎn),,是與的交點(diǎn),又軸,∴可設(shè)點(diǎn)坐標(biāo)為,代入,解得,又∵點(diǎn)在準(zhǔn)線上,設(shè)過(guò)點(diǎn)的的垂線與交于點(diǎn),,∴.故應(yīng)選C.【點(diǎn)睛】本題考查拋物線的性質(zhì),解題時(shí)只要設(shè)出拋物線的標(biāo)準(zhǔn)方程,就能得出點(diǎn)坐標(biāo),從而求得參數(shù)的值.本題難度一般.7、B【解析】由,可得,所以數(shù)列是公比為的等比數(shù)列,所以,則,則,故選B.點(diǎn)睛:本題考查了等比數(shù)列的概念,等比數(shù)列的通項(xiàng)公式及等比數(shù)列的性質(zhì)的應(yīng)用,試題有一定的技巧,屬于中檔試題,解決這類問(wèn)題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運(yùn)用,尤其需要注意的是,等比數(shù)列的性質(zhì)和在使用等比數(shù)列的前n項(xiàng)和公式時(shí),應(yīng)該要分類討論,有時(shí)還應(yīng)善于運(yùn)用整體代換思想簡(jiǎn)化運(yùn)算過(guò)程.8、A【解析】
根據(jù)換底公式可得,再化簡(jiǎn),比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.【點(diǎn)睛】本題考查換底公式和對(duì)數(shù)的運(yùn)算,屬于中檔題.9、A【解析】
利用統(tǒng)計(jì)圖結(jié)合分層抽樣性質(zhì)能求出樣本容量,利用條形圖能求出抽取的戶主對(duì)四居室滿意的人數(shù).【詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對(duì)四居室滿意的人數(shù)為:故選A.【點(diǎn)睛】本題考查樣本容量和抽取的戶主對(duì)四居室滿意的人數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意統(tǒng)計(jì)圖的性質(zhì)的合理運(yùn)用.10、A【解析】
化簡(jiǎn)得到,再利用二項(xiàng)式定理展開(kāi)得到答案.【詳解】展開(kāi)式中的項(xiàng)為.故選:【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力.11、A【解析】
分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無(wú)解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點(diǎn)睛:拋物線中與線段的長(zhǎng)度相關(guān)的最值問(wèn)題,可利用拋物線的幾何性質(zhì)把動(dòng)線段的長(zhǎng)度轉(zhuǎn)化為到準(zhǔn)線或焦點(diǎn)的距離來(lái)求解.12、A【解析】
根據(jù)等比數(shù)列的性質(zhì)可得,通分化簡(jiǎn)即可.【詳解】由題意,數(shù)列為等比數(shù)列,則,又,即,所以,,.故選:A.【點(diǎn)睛】本題考查了等比數(shù)列的性質(zhì),考查了推理能力與運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先確定頂點(diǎn)在底面的射影,再求出三棱錐的高以及各側(cè)面三角形的高,利用各個(gè)面的面積和乘以內(nèi)切球半徑等于三棱錐的體積的三倍即可解決.【詳解】設(shè)頂點(diǎn)在底面上的射影為H,H是三角形ABC的內(nèi)心,內(nèi)切圓半徑.三個(gè)側(cè)面與底面所成的角均為,,,的高,,設(shè)內(nèi)切球的半徑為R,∴,內(nèi)切球表面積.故答案為:.【點(diǎn)睛】本題考查三棱錐內(nèi)切球的表面積問(wèn)題,考查學(xué)生空間想象能力,本題解題關(guān)鍵是找到內(nèi)切球的半徑,是一道中檔題.14、【解析】
作出約束條件所表示的可行域,利用直線截距的幾何意義,即可得答案.【詳解】畫(huà)出可行域易知在點(diǎn)處取最小值為.故答案為:【點(diǎn)睛】本題考查簡(jiǎn)單線性規(guī)劃的最值,考查數(shù)形結(jié)合思想,考查運(yùn)算求解能力,屬于基礎(chǔ)題.15、【解析】
畫(huà)出不等式組表示的平面區(qū)域如下圖中陰影部分所示,易知在點(diǎn)處取得最小值,即,所以由圖可知的取值范圍為.16、【解析】試題分析:由題意得函數(shù)在[2,上單調(diào)遞增,當(dāng)時(shí)在[2,上單調(diào)遞增;當(dāng)時(shí)在上單調(diào)遞增;在上單調(diào)遞減,因此實(shí)數(shù)a的取值范圍是考點(diǎn):函數(shù)單調(diào)性三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)(Ⅱ)1【解析】
(Ⅰ)由題,得,,解方程組,即可得到本題答案;(Ⅱ)設(shè)直線,則直線,聯(lián)立,得,聯(lián)立,得,由此即可得到本題答案.【詳解】(Ⅰ)由題可得,即,,將點(diǎn)代入方程得,即,解得,所以橢圓的方程為:;(Ⅱ)由(Ⅰ)知,設(shè)直線,則直線,聯(lián)立,整理得,所以,聯(lián)立,整理得,設(shè),則,所以,所以.【點(diǎn)睛】本題主要考查橢圓標(biāo)準(zhǔn)方程的求法以及直線與橢圓的綜合問(wèn)題,考查學(xué)生的運(yùn)算求解能力.18、(1)證明見(jiàn)解析(2)【解析】
(1)根據(jù)線面垂直的性質(zhì)定理,可得DE//BF,然后根據(jù)勾股定理計(jì)算可得BF=DE,最后利用線面平行的判定定理,可得結(jié)果.(2)利用建系的方法,可得平面ABF的一個(gè)法向量為,平面CDF的法向量為,然后利用向量的夾角公式以及平方關(guān)系,可得結(jié)果.【詳解】(1)因?yàn)镈E⊥平面ABCD,所以DEAD,因?yàn)锳D=4,AE=5,DE=3,同理BF=3,又DE⊥平面ABCD,BF⊥平面ABCD,所以DE//BF,又BF=DE,所以平行四邊形BEDF,故DF//BE,因?yàn)锽E平面BCE,DF平面BCE所以DF//平面BCE;(2)建立如圖空間直角坐標(biāo)系,則D(0,0,0),A(4,0,0),C(0,4,0),F(xiàn)(4,3,﹣3),,設(shè)平面CDF的法向量為,由,令x=3,得,易知平面ABF的一個(gè)法向量為,所以,故.【點(diǎn)睛】本題考查線面平行的判定以及利用建系方法解決面面角問(wèn)題,屬基礎(chǔ)題.19、(1)(2)答案不唯一,見(jiàn)解析【解析】
(1)由題意根據(jù)和差角的三角函數(shù)公式可得,再根據(jù)同角三角函數(shù)基本關(guān)系可得的值;(2)在中,由余弦定理可得,解方程分別由三角形面積公式可得答案.【詳解】解:(1)在中,因?yàn)?,又已知,所以,因?yàn)?,所以,于?所以.(2)在中,由余弦定理得,得解得或,當(dāng)時(shí),的面積,當(dāng)時(shí),的面積.【點(diǎn)睛】本題考查正余弦定理理解三角形,涉及三角形的面積公式和分類討論思想,屬于中檔題.20、(1);(2)【解析】
(1)由題意得,求出,進(jìn)而可得到橢圓的方程;(2)由(1)知點(diǎn),坐標(biāo),設(shè)直線的方程為,易知,可得點(diǎn)的坐標(biāo)為,聯(lián)立方程,得到關(guān)于的一元二次方程,結(jié)合根與系數(shù)關(guān)系,可用表示的坐標(biāo),進(jìn)而由三點(diǎn)共線,即,可用表示的坐標(biāo),再結(jié)合,可建立方程,從而求出的值,即可求得點(diǎn)的坐標(biāo).【詳解】(1)由題意得,解得,所以橢圓的方程為.(2)由(1)知點(diǎn),,由題意可設(shè)直線的斜率為,則,所以直線的方程為,則點(diǎn)的坐標(biāo)為,聯(lián)立方程,消去得:.設(shè),則,所以,所以,所以.設(shè)點(diǎn)的坐標(biāo)為,因?yàn)辄c(diǎn)三點(diǎn)共線,所以,即,所以,所以.因?yàn)椋?,即,所以,解得,又,所以符合題意,計(jì)算可得,,故點(diǎn)的坐標(biāo)為.【點(diǎn)睛】本題考查橢圓方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度木結(jié)構(gòu)工程安全風(fēng)險(xiǎn)評(píng)估與管控合同
- 二零二五版航空航天設(shè)備采購(gòu)合同集2篇
- 二零二五年度跨境電商物流服務(wù)合同變更2篇
- 管理溝通培訓(xùn)
- 二零二五年度貨車(chē)貨運(yùn)配送承包合同3篇
- 基于2025年度財(cái)務(wù)預(yù)算的合同成本管理與優(yōu)化2篇
- 地質(zhì)勘查專用設(shè)備制造考核試卷
- 二零二五版環(huán)保項(xiàng)目墊資合同范本2篇
- 2025年度木材加工鋼材買(mǎi)賣(mài)居間合同附帶供應(yīng)鏈金融方案3篇
- 2025版小學(xué)校園廣播系統(tǒng)升級(jí)合同3篇
- 《電影之創(chuàng)戰(zhàn)紀(jì)》課件
- 社區(qū)醫(yī)療抗菌藥物分級(jí)管理方案
- 開(kāi)題報(bào)告-鑄牢中華民族共同體意識(shí)的學(xué)校教育研究
- 《醫(yī)院標(biāo)識(shí)牌規(guī)劃設(shè)計(jì)方案》
- 夜市運(yùn)營(yíng)投標(biāo)方案(技術(shù)方案)
- 電接點(diǎn) 水位計(jì)工作原理及故障處理
- 國(guó)家職業(yè)大典
- 2024版房產(chǎn)代持協(xié)議書(shū)樣本
- 公眾號(hào)運(yùn)營(yíng)實(shí)戰(zhàn)手冊(cè)
- 教學(xué)查房及體格檢查評(píng)分標(biāo)準(zhǔn)
- 西方經(jīng)濟(jì)學(xué)(第二版)完整整套教學(xué)課件
評(píng)論
0/150
提交評(píng)論