版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第40講中考簡單解答題專練(2)——尺規(guī)作圖第40講中考簡單解答題專練(2)技巧突破
類型一:
基本作圖【例1】(2016·廣東)如圖3-40-1,已知在△ABC中,D為AB的中點.(1)請用尺規(guī)作圖法作邊AC的中點E,并連接DE(保留作圖痕跡,不要求寫作法);(2)在(1)的條件下,若DE=4,求BC的長.技巧突破類型一:基本作圖【例1】(2016·廣東2解:(1)如答圖3-40-1,作線段AC的垂直平分線MN交AC于點E,點E就是所求的點.(2)∵AD=DB,AE=EC,∴DE∥BC且DE=BC.∵DE=4,∴BC=8.解:(1)如答圖3-40-1,作線段AC的垂直平分線MN交A3【例2】(2018·阜寧一模)如圖3-40-3,在△ABC中,∠ABC>∠C.(1)用直尺和圓規(guī)在∠ABC的內部作射線BM,使∠ABM=∠ACB(不要求寫作法,保留作圖痕跡);(2)若(1)中的射線BM交AC于點D,AB=4,AC=8,求CD長.【例2】(2018·阜寧一模)如圖3-40-3,在△ABC中4解:(1)如答圖3-40-2,BM即為所作.(2)∵∠ABM=∠ACB,∠A=∠A,∴△ABD∽△ACB.∴∵AB=4,AC=8,∴∴AD=2.∴CD=6.解:(1)如答圖3-40-2,BM即為所作.5類型二:
綜合作圖【例3】(2020·青海)如圖3-40-5,在Rt△ABC中,∠C=90°.(1)尺規(guī)作圖:作Rt△ABC的外接圓⊙O;作∠ACB的角平分線交⊙O于點D,連接AD(不寫作法,保留作圖痕跡);(2)若AC=6,BC=8,求AD的長.類型二:綜合作圖【例3】(2020·青海)如圖6解:(1)如答圖3-40-3,Rt△ABC的外接圓⊙O即為所作.解:(1)如答圖3-40-3,Rt△ABC的外接圓⊙O即為所7(2)如答圖3-40-3,連接BD.∵∠C=90°.∴AB是⊙O的直徑.∴∠BDA=90°.∵CD平分∠ACB,∴∠ACD=∠BCD=45°.∴∠DBA=∠ACD=45°.∵AC=6,BC=8,∴AB=
=10.∴AD=BD=AB·sin45°=10×(2)如答圖3-40-3,連接BD.8【例4】尺規(guī)作圖:如圖3-40-7,已知△ABC,求作△DEF,使△DEF≌△ABC(不寫作法,保留作圖痕跡).【例4】尺規(guī)作圖:如圖3-40-7,已知△ABC,求作△DE9解:如答圖3-40-4,△DEF即為所作.(答案不唯一)解:如答圖3-40-4,△DEF即為所作.(答案不唯一)10變式診斷1.(2018·廣東)如圖3-40-2,BD是菱形ABCD的對角線,∠CBD=75°.(1)請用尺規(guī)作圖法,作AB的垂直平分線EF,垂足為點E,交AD于點F(不要求寫作法,保留作圖痕跡);(2)在(1)的條件下,連接BF,求∠DBF的度數.變式診斷1.(2018·廣東)如圖3-40-2,BD是菱形A11解:(1)如答圖3-40-5,直線EF即為所作.解:(1)如答圖3-40-5,直線EF即為所作.12(2)∵四邊形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°.∴∠A=∠C=30°.∵EF垂直平分線段AB,∴AF=FB.∴∠FBA=∠A=30°.∴∠DBF=∠ABD-∠FBA=45°.(2)∵四邊形ABCD是菱形,132.(2019·河池)如圖3-40-4,AB為⊙O的直徑,點C在⊙O上.(1)尺規(guī)作圖:作∠BAC的平分線,與⊙O交于點D;連接OD,交BC于點E(不寫作法,只保留作圖痕跡);(2)探究OE與AC的位置及數量關系,并證明你的結論.2.(2019·河池)如圖3-40-4,AB為⊙O的直徑,點14解:(1)如答圖3-40-6,AD即為所作.解:(1)如答圖3-40-6,AD即為所作.15(2)OE∥AC,OE=AC.理由如下:∵AD平分∠BAC,∴∠BAD=∠BAC.∵∠BAD=∠BOD,∴∠BOD=∠BAC.∴OE∥AC.又∵OA=OB,∴OE為△ABC的中位線,∴OE∥AC,OE=AC.(2)OE∥AC,OE=AC.163.(2019·福建模擬)如圖3-40-6,已知△ABC為等腰三角形.(1)尺規(guī)作圖:作△ABC的外接圓⊙O(保留作圖痕跡,不寫作法);(2)若底邊BC=5,腰AB=3,求△ABC外接圓⊙O的半徑.3.(2019·福建模擬)如圖3-40-6,已知△ABC為等17解:(1)如答圖3-40-7,⊙O即為所作.解:(1)如答圖3-40-7,⊙O即為所作.18(2)如答圖3-40-6,連接OB,記OA與BC交于點E.設OA=OB=r.∵AB=AC=3,OA⊥BC,∴BE=EC=∴在Rt△ABE中,AE=在Rt△OBE中,r2=∴r=(2)如答圖3-40-6,連接OB,記OA與BC交于點E.194.(2019·貴港)尺規(guī)作圖(只保留作圖痕跡,不要求寫出作法):如圖3-40-8,已知△ABC,請根據“SAS”基本事實作出△DEF,使△DEF≌△ABC.4.(2019·貴港)尺規(guī)作圖(只保留作圖痕跡,不要求寫出20解:如答圖3-40-8,△DEF即為所作.解:如答圖3-40-8,△DEF即為所作.21強化訓練5.如圖3-40-9,在△ABC中,(1)請你作出AC邊上的高BD(用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);(2)若AB=AC=8,BC=6,求BD的長.強化訓練5.如圖3-40-9,在△ABC中,22解:(1)如答圖3-40-9,BD即為所作.解:(1)如答圖3-40-9,BD即為所作.23(2)設AD=x,則CD=8-x.∵BD⊥AC,∴在Rt△ABD中,BD2=AB2-AD2=82-x2.在Rt△BCD中,BD2=BC2-CD2=62-(8-x)2.∴82-x2=62-(8-x)2.解得x=∴在Rt△ABD中,BD=(2)設AD=x,則CD=8-x.246.(2020·東莞一模)如圖3-40-10,在△ABC中,點E是AB延長線上一點,且BE=AB.(1)尺規(guī)作圖:在∠CBE內作射線BD,使BD∥AC(保留作圖痕跡,不要求寫作法);(2)在BD上取點F,使BF=AC,連接EF,求證△ABC≌△BEF.6.(2020·東莞一模)如圖3-40-10,在△ABC中,25解:(1)如答圖3-40-10,射線BD即為所作.(2)∵BD∥AC,∴∠EBD=∠A,∵BE=AB,BF=AC,∴△ABC≌△BEF(SAS).解:(1)如答圖3-40-10,射線BD即為所作.267.(2019·白銀)如圖3-40-11,在△ABC中,AB=AC.(1)求作:△ABC的外接圓(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)若△ABC的外接圓的圓心O到BC邊的距離為4,BC=6,則S⊙O=________.(結果保留π)25π7.(2019·白銀)如圖3-40-11,在△ABC中,A27解:(1)如答圖3-40-11,⊙O即為所作.解:(1)如答圖3-40-11,⊙O即為所作.288.同學們在學習“探索三角形全等的條件”時,發(fā)現“有兩邊和其中一邊的對角對應相等的兩個三角形全等”是假命題.說明一個命題是假命題,只需要畫出反例即可.如圖3-40-12,已知△ABC和A′B′,A′B′=AB.請用直尺和圓規(guī)在圖3-40-12②中作△A′B′C′,使得∠A′=∠A,B′C′=BC,且△A′B′C′與△ABC不全等.(保留作圖痕跡,不寫作法)8.同學們在學習“探索三角形全等的條件”時,發(fā)現“有兩邊和其29解:如答圖3-40-12,則△A′B′C′是所求作的三角形.解:如答圖3-40-12,則△A′B′C′是所求作的三角形.30
謝謝謝謝31第40講中考簡單解答題專練(2)——尺規(guī)作圖第40講中考簡單解答題專練(2)技巧突破
類型一:
基本作圖【例1】(2016·廣東)如圖3-40-1,已知在△ABC中,D為AB的中點.(1)請用尺規(guī)作圖法作邊AC的中點E,并連接DE(保留作圖痕跡,不要求寫作法);(2)在(1)的條件下,若DE=4,求BC的長.技巧突破類型一:基本作圖【例1】(2016·廣東33解:(1)如答圖3-40-1,作線段AC的垂直平分線MN交AC于點E,點E就是所求的點.(2)∵AD=DB,AE=EC,∴DE∥BC且DE=BC.∵DE=4,∴BC=8.解:(1)如答圖3-40-1,作線段AC的垂直平分線MN交A34【例2】(2018·阜寧一模)如圖3-40-3,在△ABC中,∠ABC>∠C.(1)用直尺和圓規(guī)在∠ABC的內部作射線BM,使∠ABM=∠ACB(不要求寫作法,保留作圖痕跡);(2)若(1)中的射線BM交AC于點D,AB=4,AC=8,求CD長.【例2】(2018·阜寧一模)如圖3-40-3,在△ABC中35解:(1)如答圖3-40-2,BM即為所作.(2)∵∠ABM=∠ACB,∠A=∠A,∴△ABD∽△ACB.∴∵AB=4,AC=8,∴∴AD=2.∴CD=6.解:(1)如答圖3-40-2,BM即為所作.36類型二:
綜合作圖【例3】(2020·青海)如圖3-40-5,在Rt△ABC中,∠C=90°.(1)尺規(guī)作圖:作Rt△ABC的外接圓⊙O;作∠ACB的角平分線交⊙O于點D,連接AD(不寫作法,保留作圖痕跡);(2)若AC=6,BC=8,求AD的長.類型二:綜合作圖【例3】(2020·青海)如圖37解:(1)如答圖3-40-3,Rt△ABC的外接圓⊙O即為所作.解:(1)如答圖3-40-3,Rt△ABC的外接圓⊙O即為所38(2)如答圖3-40-3,連接BD.∵∠C=90°.∴AB是⊙O的直徑.∴∠BDA=90°.∵CD平分∠ACB,∴∠ACD=∠BCD=45°.∴∠DBA=∠ACD=45°.∵AC=6,BC=8,∴AB=
=10.∴AD=BD=AB·sin45°=10×(2)如答圖3-40-3,連接BD.39【例4】尺規(guī)作圖:如圖3-40-7,已知△ABC,求作△DEF,使△DEF≌△ABC(不寫作法,保留作圖痕跡).【例4】尺規(guī)作圖:如圖3-40-7,已知△ABC,求作△DE40解:如答圖3-40-4,△DEF即為所作.(答案不唯一)解:如答圖3-40-4,△DEF即為所作.(答案不唯一)41變式診斷1.(2018·廣東)如圖3-40-2,BD是菱形ABCD的對角線,∠CBD=75°.(1)請用尺規(guī)作圖法,作AB的垂直平分線EF,垂足為點E,交AD于點F(不要求寫作法,保留作圖痕跡);(2)在(1)的條件下,連接BF,求∠DBF的度數.變式診斷1.(2018·廣東)如圖3-40-2,BD是菱形A42解:(1)如答圖3-40-5,直線EF即為所作.解:(1)如答圖3-40-5,直線EF即為所作.43(2)∵四邊形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°.∴∠A=∠C=30°.∵EF垂直平分線段AB,∴AF=FB.∴∠FBA=∠A=30°.∴∠DBF=∠ABD-∠FBA=45°.(2)∵四邊形ABCD是菱形,442.(2019·河池)如圖3-40-4,AB為⊙O的直徑,點C在⊙O上.(1)尺規(guī)作圖:作∠BAC的平分線,與⊙O交于點D;連接OD,交BC于點E(不寫作法,只保留作圖痕跡);(2)探究OE與AC的位置及數量關系,并證明你的結論.2.(2019·河池)如圖3-40-4,AB為⊙O的直徑,點45解:(1)如答圖3-40-6,AD即為所作.解:(1)如答圖3-40-6,AD即為所作.46(2)OE∥AC,OE=AC.理由如下:∵AD平分∠BAC,∴∠BAD=∠BAC.∵∠BAD=∠BOD,∴∠BOD=∠BAC.∴OE∥AC.又∵OA=OB,∴OE為△ABC的中位線,∴OE∥AC,OE=AC.(2)OE∥AC,OE=AC.473.(2019·福建模擬)如圖3-40-6,已知△ABC為等腰三角形.(1)尺規(guī)作圖:作△ABC的外接圓⊙O(保留作圖痕跡,不寫作法);(2)若底邊BC=5,腰AB=3,求△ABC外接圓⊙O的半徑.3.(2019·福建模擬)如圖3-40-6,已知△ABC為等48解:(1)如答圖3-40-7,⊙O即為所作.解:(1)如答圖3-40-7,⊙O即為所作.49(2)如答圖3-40-6,連接OB,記OA與BC交于點E.設OA=OB=r.∵AB=AC=3,OA⊥BC,∴BE=EC=∴在Rt△ABE中,AE=在Rt△OBE中,r2=∴r=(2)如答圖3-40-6,連接OB,記OA與BC交于點E.504.(2019·貴港)尺規(guī)作圖(只保留作圖痕跡,不要求寫出作法):如圖3-40-8,已知△ABC,請根據“SAS”基本事實作出△DEF,使△DEF≌△ABC.4.(2019·貴港)尺規(guī)作圖(只保留作圖痕跡,不要求寫出51解:如答圖3-40-8,△DEF即為所作.解:如答圖3-40-8,△DEF即為所作.52強化訓練5.如圖3-40-9,在△ABC中,(1)請你作出AC邊上的高BD(用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);(2)若AB=AC=8,BC=6,求BD的長.強化訓練5.如圖3-40-9,在△ABC中,53解:(1)如答圖3-40-9,BD即為所作.解:(1)如答圖3-40-9,BD即為所作.54(2)設AD=x,則CD=8-x.∵BD⊥AC,∴在Rt△ABD中,BD2=AB2-AD2=82-x2.在Rt△BCD中,BD2=BC2-CD2=62-(8-x)2.∴82-x2=62-(8-x)2.解得x=∴在Rt△ABD中,BD=(2)設AD=x,則CD=8-x.556.(2020·東莞一模)如圖3-40-10,在△ABC中,點E是AB延長線上一點,且BE=AB.(1)尺規(guī)作圖:在∠CBE內作射線BD,使BD∥AC(保留作圖痕跡,不要求寫
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度旅游行業(yè)數據分析與應用合同4篇
- 二零二五年度不銹鋼裝飾材料定制與銷售合同3篇
- 二零二五年度綠色有機大米購銷合作協(xié)議范本3篇
- 二零二五年度航空航天器零部件安裝合同3篇
- 2025年度插花產品線上銷售平臺合作協(xié)議4篇
- 二零二五版水電設備安裝與維修兼職協(xié)議3篇
- 市政消防施工方案
- 專用鍋爐設備供應與運營管理承包協(xié)議版B版
- 2025年度高速公路土方工程施工承包合同范本2篇
- 2025年度時尚飾品生產廠家訂單合同范本4篇
- 臨床醫(yī)學院畢業(yè)實習管理-new-new課件
- 阻燃材料的阻燃機理建模
- PLC控制系統(tǒng)合同(2024版)
- CJT 511-2017 鑄鐵檢查井蓋
- ISO15189培訓測試卷及答案
- JJG(交通) 171-2021 超聲式成孔質量檢測儀檢定規(guī)程
- 氣象衛(wèi)星技術在軍事中的應用
- 配電工作組配電網集中型饋線自動化技術規(guī)范編制說明
- 介入科圍手術期護理
- 化驗員個人自查自糾報告
- 食品良好操作規(guī)范(GMP)和食品衛(wèi)生標準操作程序(SSOP)課件
評論
0/150
提交評論