版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,在中,,則的長度為A.1 B. C. D.2.在Rt△ABC中,∠C=90°,sinA=,則cosB的值等于()A. B. C. D.3.如圖,正方形的邊長為4,點在的邊上,且,與關于所在的直線對稱,將按順時針方向繞點旋轉得到,連接,則線段的長為()A.4 B. C.5 D.64.《孫子算經》中有一道題:“今有木,不知長短,引繩度之,余繩四尺五寸;屈繩量之,不足一尺,木長幾何?”譯文大致是:“用一根繩子去量一根木條,繩子剩余4.5尺;將繩子對折再量木條,木條剩余1尺,問木條長多少尺?”如果設木條長尺,繩子長尺,根據題意列方程組正確的是()A. B. C. D.5.如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是拋物線上兩點,則y1<y2A.①② B.②③ C.②④ D.①③④6.圓錐的底面半徑是,母線為,則它的側面積是()A. B. C. D.7.已知△ABC∽△A′B′C′,且相似比為1:1.則△ABC與△A′B′C′的周長比為()A.1:1 B.1:6 C.1:9 D.1:8.如圖,已知AB∥CD∥EF,AC=4,CE=1,BD=3,則DF的值為()A. B. C. D.19.若方程有兩個不相等的實數(shù)根,則實數(shù)的值可能是()A.3 B.4 C.5 D.610.如圖,△AOB縮小后得到△COD,△AOB與△COD的相似比是3,若C(1,2),則點A的坐標為()A.(2,4) B.(2,6) C.(3,6) D.(3,4)11.如圖,已知?ABCD中,E是邊AD的中點,BE交對角線AC于點F,那么S△AFE:S四邊形FCDE為()A.1:3 B.1:4 C.1:5 D.1:612.下列所給圖形是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,五邊形是正五邊形,若,則__________.14.如圖,直線交x軸于點A,交y軸于點B,點P是x軸上一動點,以點P為圓心,以1個單位長度為半徑作⊙P,當⊙P與直線AB相切時,點P的橫坐標是_____15.若如果x:y=3:1,那么x:(x-y)的值為_______.16.一天,小青想利用影子測量校園內一根旗桿的高度,在同一時刻內,小青的影長為米,旗桿的影長為米,若小青的身高為米,則旗桿的高度為__________米.17.如圖,在Rt△ABC中,∠C=90°,邊AB的垂直平分線分別交邊BC、AB于點D、E如果BC=8,,那么BD=_____.18.在泰州市舉行的大閱讀活動中,小明同學發(fā)現(xiàn)自己的一本書的寬與長之比為黃金比.已知這本書的長為20cm,則它的寬為________cm.(結果保留根號)三、解答題(共78分)19.(8分)如圖,在平面直角坐標系中,已知拋物線經過原點,頂點為,且與直線相交于兩點.(1)求拋物線的解析式;(2)求、兩點的坐標;(3)若點為軸上的一個動點,過點作軸與拋物線交于點,則是否存在以為頂點的三角形與相似?若存在,請直接寫出點的坐標;若不存在,請說明理由.20.(8分)如圖,已知二次函數(shù)的圖象與軸交于、兩點(點在點的左側),與軸交于點,且,頂點為.(1)求二次函數(shù)的解析式;(2)點為線段上的一個動點,過點作軸的垂線,垂足為,若,四邊形的面積為,求關于的函數(shù)解析式,并寫出的取值范圍;(3)探索:線段上是否存在點,使為等腰三角形?如果存在,求出點的坐標;如果不存在,請說呀理由.21.(8分)如圖,在社會實踐活動中,某數(shù)學興趣小組想測量在樓房CD頂上廣告牌DE的高度,他們先在點A處測得廣告牌頂端E的仰角為60°,底端D的仰角為30°,然后沿AC方向前行20m,到達B點,在B處測得D的仰角為45°(C,D,E三點在同一直線上).請你根據他們的測量數(shù)據計算這廣告牌DE的高度(結果保留小數(shù)點后一位,參考數(shù)據:,).22.(10分)解方程:x2﹣6x+8=1.23.(10分)如圖,二次函數(shù)y=﹣2x2+x+m的圖象與x軸的一個交點為A(1,0),另一個交點為B,且與y軸交于點C.(1)求m的值;(2)求點B的坐標;(3)該二次函數(shù)圖象上是否有一點D(x,y)使S△ABD=S△ABC,求點D的坐標.24.(10分)如圖,在中,是邊上的一點,若,求證:.25.(12分)有甲、乙兩個不透明的布袋,甲袋中有3個完全相同的小球,分別標有數(shù)字0,1和2;乙袋中有3個完全相同的小球,分別標有數(shù)字1,2和3,小明從甲袋中隨機取出1個小球,記錄標有的數(shù)字為x,再從乙袋中隨機取出1個小球,記錄標有的數(shù)字為y,這樣確定了點M的坐標(x,y).(1)寫出點M所有可能的坐標;(2)求點M在直線上的概率.26.已知:如圖,將△ADE繞點A順時針旋轉得到△ABC,點E對應點C恰在D的延長線上,若BC∥AE.求證:△ABD為等邊三角形.
參考答案一、選擇題(每題4分,共48分)1、C【分析】根據已知條件得到,根據相似三角形的判定和性質可得,即可得到結論.【詳解】解:∵,
∴,
∵DE∥BC,
∴△ADE∽△ABC,,∴,∴BC=4.故選:C.【點睛】本題考查了相似三角形的判定與性質,熟悉相似基本圖形掌握相似三角形的判定與性質是解題關鍵.2、B【解析】在Rt△ABC中,∠C=90°,∠A+∠B=90°,則cosB=sinA=.故選B.點睛:本題考查了互余兩角三角函數(shù)的關系.在直角三角形中,互為余角的兩角的互余函數(shù)相等.3、C【分析】如圖,連接BE,根據軸對稱的性質得到AF=AD,∠EAD=∠EAF,根據旋轉的性質得到AG=AE,∠GAB=∠EAD.求得∠GAB=∠EAF,根據全等三角形的性質得到FG=BE,根據正方形的性質得到BC=CD=AB=1.根據勾股定理即可得到結論.【詳解】解:如圖,連接BE,∵△AFE與△ADE關于AE所在的直線對稱,∴AF=AD,∠EAD=∠EAF,∵△ADE按順時針方向繞點A旋轉90°得到△ABG,∴AG=AE,∠GAB=∠EAD.∴∠GAB=∠EAF,∴∠GAB+∠BAF=∠BAF+∠EAF.∴∠GAF=∠EAB.∴△GAF≌△EAB(SAS).∴FG=BE,∵四邊形ABCD是正方形,∴BC=CD=AB=1.∵DE=1,∴CE=2.∴在Rt△BCE中,BE=,∴FG=5,故選:C.【點睛】本題考查了正方形的性質,勾股定理,全等三角形的判定與性質以及旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.4、A【解析】本題的等量關系是:木長繩長,繩長木長,據此可列方程組即可.【詳解】設木條長為尺,繩子長為尺,根據題意可得:.故選:.【點睛】本題考查由實際問題抽象出二元一次方程組,解題的關鍵是明確題意,列出相應的二元一次方程組.5、C【解析】試題分析:根據題意可得:a<0,b>0,c>0,則abc<0,則①錯誤;根據對稱軸為x=1可得:-b2a=1,則-b=2a,即2a+b=0,則②正確;根據函數(shù)的軸對稱可得:當x=2時,y>0,即4a+2b+c>0,則③錯誤;對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大,則點睛:本題主要考查的就是二次函數(shù)的性質,屬于中等題.如果開口向上,則a>0,如果開口向下,則a<0;如果對稱軸在y軸左邊,則b的符號與a相同,如果對稱軸在y軸右邊,則b的符號與a相反;如果題目中出現(xiàn)2a+b和2a-b的時候,我們要看對稱軸與1或者-1的大小關系再進行判定;如果出現(xiàn)a+b+c,則看x=1時y的值;如果出現(xiàn)a-b+c,則看x=-1時y的值;如果出現(xiàn)4a+2b+c,則看x=2時y的值,以此類推;對于開口向上的函數(shù),離對稱軸越遠則函數(shù)值越大,對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大.6、A【分析】根據圓錐的側面積=底面周長×母線長計算.【詳解】圓錐的側面面積=×6×5=15cm1.故選:A.【點睛】本題考查圓錐的側面積=底面周長×母線長,解題的關鍵是熟知公式的運用.7、A【解析】根據相似三角形的周長比等于相似比即可得出答案.【詳解】∵△ABC∽△A′B′C′,且相似比為1:1,∴△ABC與△A′B′C′的周長比為1:1,故選:A.【點睛】本題考查相似三角形的性質,解題的關鍵是熟練掌握基本知識,屬于基礎題型.8、C【分析】根據平行線分線段成比例定理即可得出結論.【詳解】解:∵直線AB∥CD∥EF,AC=4,CE=1,BD=3,∴即,解得DF=.
故選:C.【點睛】本題考查的是平行線分線段成比例定理,熟知三條平行線截兩條直線,所得的對應線段成比例是解答此題的關鍵.9、A【分析】根據一元二次方程有兩個實數(shù)根可得:△>0,列出不等式即可求出的取值范圍,從而求出實數(shù)的可能值.【詳解】解:由題可知:解出:各個選項中,只有A選項的值滿足該取值范圍,故選A.【點睛】此題考查的是求一元二次方程的參數(shù)的取值范圍,掌握一元二次方程根的情況與△的關系是解決此題的關鍵.10、C【解析】根據位似變換的性質計算即可.【詳解】由題意得,點A與點C是對應點,△AOB與△COD的相似比是3,∴點A的坐標為(1×3,2×3),即(3,6),故選:C.【點睛】本題考查的是位似變換的性質,掌握在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或﹣k是解題的關鍵.11、C【解析】根據AE∥BC,E為AD中點,找到AF與FC的比,則可知△AEF面積與△FCE面積的比,同時因為△DEC面積=△AEC面積,則可知四邊形FCDE面積與△AEF面積之間的關系.【詳解】解:連接CE,∵AE∥BC,E為AD中點,
∴.
∴△FEC面積是△AEF面積的2倍.
設△AEF面積為x,則△AEC面積為3x,
∵E為AD中點,
∴△DEC面積=△AEC面積=3x.
∴四邊形FCDE面積為1x,
所以S△AFE:S四邊形FCDE為1:1.
故選:C.【點睛】本題考查相似三角形的判定和性質、平行四邊形的性質,解題關鍵是通過線段的比得到三角形面積的關系.12、D【解析】A.此圖形不是中心對稱圖形,不是軸對稱圖形,故A選項錯誤;B.此圖形是中心對稱圖形,也是軸對稱圖形,故B選項錯誤;C.此圖形不是中心對稱圖形,是軸對稱圖形,故D選項錯誤.D.此圖形是中心對稱圖形,不是軸對稱圖形,故C選項正確;故選D.二、填空題(每題4分,共24分)13、72【解析】分析:延長AB交于點F,根據得到∠2=∠3,根據五邊形是正五邊形得到∠FBC=72°,最后根據三角形的外角等于與它不相鄰的兩個內角的和即可求出.詳解:延長AB交于點F,∵,∴∠2=∠3,∵五邊形是正五邊形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案為:72°.點睛:此題主要考查了平行線的性質和正五邊形的性質,正確把握五邊形的性質是解題關鍵.14、【分析】根據函數(shù)解析式求得A(3,1),B(1,-3),得到OA=3,OB=3根據勾股定理得到AB=6,設⊙P與直線AB相切于D,連接PD,則PD⊥AB,PD=2,根據相似三角形的性質即可得到結論.【詳解】∵直線交x軸于點A,交y軸于點B,
∴令x=1,得y=-3,令y=1,得x=3,
∴A(3,1),B(1.-3),
∴OA=3,OB=3,
∴AB=6,
設⊙P與直線AB相切于D,連接PD,則PD⊥AB,PD=1,
∵∠ADP=∠AOB=91°,∠PAD=∠BAO,
∴△APD∽△ABO,
∴,
∴,
∴AP=2,
∴OP=3-2或OP=3+2,
∴P(3-2,1)或P(3+2,1),
故答案為:.【點睛】本題考查了切線的判定和性質,一次函數(shù)圖形上點的坐標特征,相似三角形的判定和性質,正確的理解題意并進行分類討論是解題的關鍵.15、【分析】根據x:y=3:1,則可設x=3a,y=a,即可計算x:(x-y)的值.【詳解】解:設x=3a,y=a,則x:(x-y)=3a:(3a-a)=,故答案為:.【點睛】本題考查了比的性質,解題的關鍵是根據已有比例關系,設出x、y的值.16、1【分析】易得△AOB∽△ECD,利用相似三角形對應邊的比相等可得旗桿OA的長度.【詳解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴,解得OA=1.故答案為1.17、【解析】:∵在RT△ABC中,∠C=90°,BC=8,tanA=,∴AC=,∴AB=,∵邊AB的垂直平分線交邊AB于點E,∴BE=,∵在RT△BDE中,∠BED=90°,∴cosB=,∴BD=,故答案為.點睛:本題考查了解直角三角形,線段平分線的性質,掌握直角三角形中邊角之間的關系是解答本題的關鍵.18、()【解析】設它的寬為xcm.由題意得.∴.點睛:本題主要考查黃金分割的應用.把一條線段分割為兩部分,使其中較長部分與全長之比等于較短部分與較長部分之比,其比值是一個無理數(shù),即,近似值約為0.618.三、解答題(共78分)19、(1);(2),;(3);坐標為或或或.【分析】(1)可設頂點式,把原點坐標代入可求得拋物線解析式,
(2)聯(lián)立直線與拋物線解析式,可求得C點坐標;
(3)設出N點坐標,可表示出M點坐標,從而可表示出MN、ON的長度,當△MON和△ABC相似時,利用三角形相似的性質可得或,可求得N點的坐標【詳解】解:(1)∵頂點坐標為,∴設拋物線解析式為,又拋物線過原點,∴,解得:,∴拋物線解析式為:,即.(2)聯(lián)立拋物線和直線解析式可得,解得:或,∴,;(3)存在;坐標為或或或.理由:假設存在滿足條件的點,設,則,∴,,由(2)知,,,∵軸于點,∴,∴當和相似時,有或,①當時,∴,即,∵當時、、不能構成三角形,∴,∴,∴,解得:或,此時點坐標為:或;②當時,∴,即,∴,∴,解得:或,此時點坐標為:或,綜上可知,在滿足條件的點,其坐標為:或或或.【點睛】本題為二次函數(shù)的綜合應用,涉及知識點有待定系數(shù)法、圖象的交點問題、直角三角形的判定、勾股定理及逆定理、相似三角形的性質及分類討論等.在(1)中注意頂點式的運用,在(3)中設出N、M的坐標,利用相似三角形的性質得到關于坐標的方程是解題的關鍵,注意相似三角形點的對應.本題考查知識點較多,綜合性較強,難度適中.20、(1);(2);(3)存在,,.【解析】(1)可根據OB、OC的長得出B、C兩點的坐標,然后用待定系數(shù)法即可求出拋物線的解析式.
(2)可將四邊形ACPQ分成直角三角形AOC和直角梯形CQPC兩部分來求解.先根據拋物線的解析式求出A點的坐標,即可得出三角形AOC直角邊OA的長,據此可根據上面得出的四邊形的面積計算方法求出S與m的函數(shù)關系式.
(3)先根據拋物線的解析式求出M的坐標,進而可得出直線BM的解析式,據此可設出N點的坐標,然后用坐標系中兩點間的距離公式分別表示出CM、MN、CN的長,然后分三種情況進行討論:①CM=MN;②CM=CN;③MN=CN.根據上述三種情況即可得出符合條件的N點的坐標.【詳解】解:(1)∵,∴,.∴,解得,∴二次函數(shù)的解析式為;(2),設直線的解析式為,則有解得∴直線的解析式為∵軸,,∴點的坐標為;(3)線段上存在點,使為等腰三角形.設點坐標為則:,,①當時,解得,(舍去)此時②當時,,解得,(舍去),此時③當時,解得,此時.【點睛】本題考查了二次函數(shù)解析式的確定、圖形的面積求法、函數(shù)圖象交點、等腰三角形的判定等知識及綜合應用知識、解決問題的能力.考查學生分類討論、數(shù)形結合的數(shù)學思想方法.21、廣告牌的高度為54.6米.【分析】由題可知:,,,先得到CD=CB,在三角形ACD中,利用正切列出關于CD的等式并解出,從而求出BC的值,加上AB的值得到AC的值,在三角形ACE中利用正切得到CE的長度,最后用CE-CD即為所求.【詳解】解:∵又,在中,即答:廣告牌的高度為54.6米.【點睛】本題考查了解直角三角形的應用,關鍵是根據仰角構造直角三角形,利用三角函數(shù)求解,注意利用兩個直角三角形的公共邊求解是解答此類題型的關鍵.22、x1=2x2=2.【分析】應用因式分解法解答即可.【詳解】解:x2﹣6x+8=1(x﹣2)(x﹣2)=1,∴x﹣2=1或x﹣2=1,∴x1=2x2=2.【點睛】本題考查了解一元二次方程﹣因式分解法,解答關鍵是根據方程特點進行因式分解.23、(1)1;(2)B(﹣,0);(3)D的坐標是(,1)或(,﹣1)或(,﹣1)【分析】(1)把點A的坐標代入函數(shù)解析式,利用方程來求m的值;(2)令y=0,則通過解方程來求點B的橫坐標;(3)利用三角形的面積公式進行解答.【詳解】解:(1)把A(1,0)代入y=﹣2x2+x+m,得﹣2×12+1+m=0,解得m=1;(2)由(1)知,拋物線的解析式為y=﹣2x2+x+1.令y=0,則﹣2x2+x+1=0,故x==,解得x1=﹣,x2=1.故該拋物線與x軸的交點是(﹣,0)和(1,0).∵點為A(1,0),∴另一個交點為B是(﹣,0);(3)∵拋物線解析式為y=﹣2x2+x+1,∴C(0,1),∴OC=1.∵S△ABD=S△ABC,∴點D與點C的縱坐標的絕對值相等,∴當y=1時,﹣2x2+x+1=1,即x(﹣2x+1)=0解得x=0或x=.即(0,1)(與點C重合,舍去)和D(,1)符合題意.當y=﹣1時,﹣2x2+x+1=﹣1,即2x2﹣x﹣2=0解得x=.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度場營銷分公司智慧城市項目合作協(xié)議3篇
- 二零二五版商業(yè)街區(qū)場地租賃合作協(xié)議書6篇
- 2025年度高新技術產業(yè)常年法律顧問聘用協(xié)議3篇
- 二零二五年度企業(yè)稅收籌劃與稅收籌劃實施合同3篇
- 二零二五年度出口退稅證明開具及國際金融服務合同3篇
- 二零二五年度港口碼頭租賃及港口貨物裝卸、倉儲及配送服務協(xié)議8篇
- 二零二五年度土地承包經營權糾紛調解合同-@-2
- 2025草原禁牧與水資源保護管理協(xié)議合同3篇
- 2025年度個人個人借款合同信用評估標準3篇
- 二零二五食用油產品包裝設計與印刷合同
- 中考模擬考試化學試卷與答案解析(共三套)
- 新人教版五年級小學數(shù)學全冊奧數(shù)(含答案)
- 風電場升壓站培訓課件
- 收納盒注塑模具設計(論文-任務書-開題報告-圖紙)
- 博弈論全套課件
- CONSORT2010流程圖(FlowDiagram)【模板】文檔
- 腦電信號處理與特征提取
- 高中數(shù)學知識點全總結(電子版)
- GB/T 10322.7-2004鐵礦石粒度分布的篩分測定
- 2023新譯林版新教材高中英語必修一重點詞組歸納總結
- 蘇教版四年級數(shù)學下冊第3單元第2課時“常見的數(shù)量關系”教案
評論
0/150
提交評論