錦州市重點2023年高三適應(yīng)性調(diào)研考試數(shù)學試題含解析_第1頁
錦州市重點2023年高三適應(yīng)性調(diào)研考試數(shù)學試題含解析_第2頁
錦州市重點2023年高三適應(yīng)性調(diào)研考試數(shù)學試題含解析_第3頁
錦州市重點2023年高三適應(yīng)性調(diào)研考試數(shù)學試題含解析_第4頁
錦州市重點2023年高三適應(yīng)性調(diào)研考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若的二項展開式中的系數(shù)是40,則正整數(shù)的值為()A.4 B.5 C.6 D.72.已知數(shù)列滿足,且,則的值是()A. B. C.4 D.3.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且4.如圖,正四面體的體積為,底面積為,是高的中點,過的平面與棱、、分別交于、、,設(shè)三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,5.設(shè)數(shù)列是等差數(shù)列,,.則這個數(shù)列的前7項和等于()A.12 B.21 C.24 D.366.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知向量,,若,則()A. B. C. D.8.已知雙曲線的左、右頂點分別是,雙曲線的右焦點為,點在過且垂直于軸的直線上,當?shù)耐饨訄A面積達到最小時,點恰好在雙曲線上,則該雙曲線的方程為()A. B.C. D.9.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.10.設(shè)等比數(shù)列的前項和為,若,則的值為()A. B. C. D.11.在精準扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種12.已知橢圓的左、右焦點分別為,,上頂點為點,延長交橢圓于點,若為等腰三角形,則橢圓的離心率A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若將函數(shù)的圖象沿軸向右平移個單位后所得的圖象與的圖象關(guān)于軸對稱,則的最小值為________________.14.學校藝術(shù)節(jié)對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預(yù)測如下:甲說:“作品獲得一等獎”;乙說:“作品獲得一等獎”;丙說:“,兩項作品未獲得一等獎”;丁說:“是或作品獲得一等獎”,若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是___.15.(5分)已知函數(shù),則不等式的解集為____________.16.如圖,為測量出高,選擇和另一座山的山頂為測量觀測點,從點測得點的仰角,點的仰角以及;從點測得.已知山高,則山高__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2019年是五四運動100周年.五四運動以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100年.為繼承和發(fā)揚五四精神在青年節(jié)到來之際,學校組織“五四運動100周年”知識競賽,競賽的一個環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機抽取3道作答,現(xiàn)有甲同學參加該環(huán)節(jié)的比賽.(1)求甲同學至少抽到2道B類題的概率;(2)若甲同學答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨立.現(xiàn)已知甲同學恰好抽中2道A類題和1道B類題,用X表示甲同學答對題目的個數(shù),求隨機變量X的分布列和數(shù)學期望.18.(12分)已知數(shù)列{an}滿足條件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.(Ⅰ)求數(shù)列{an}的通項公式;(Ⅱ)設(shè)bn=,Sn為數(shù)列{bn}的前n項和,求證:Sn.19.(12分)已知拋物線:()的焦點到點的距離為.(1)求拋物線的方程;(2)過點作拋物線的兩條切線,切點分別為,,點、分別在第一和第二象限內(nèi),求的面積.20.(12分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個特征向量為α=,A的逆矩陣A-1對應(yīng)的變換將點(3,1)變?yōu)辄c(1,1).求實數(shù)a,k的值.21.(12分)已知.(1)當時,求不等式的解集;(2)若,,證明:.22.(10分)已知函數(shù),.(Ⅰ)當時,求曲線在處的切線方程;(Ⅱ)求函數(shù)在上的最小值;(Ⅲ)若函數(shù),當時,的最大值為,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,∴,∴(舍)或.【點睛】本題考查二項展開式問題,屬于基礎(chǔ)題2.B【解析】由,可得,所以數(shù)列是公比為的等比數(shù)列,所以,則,則,故選B.點睛:本題考查了等比數(shù)列的概念,等比數(shù)列的通項公式及等比數(shù)列的性質(zhì)的應(yīng)用,試題有一定的技巧,屬于中檔試題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運用,尤其需要注意的是,等比數(shù)列的性質(zhì)和在使用等比數(shù)列的前n項和公式時,應(yīng)該要分類討論,有時還應(yīng)善于運用整體代換思想簡化運算過程.3.B【解析】

連接,,,,由正四棱柱的特征可知,再由平面的基本性質(zhì)可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設(shè),則,則,,,由余弦定理,得.故選:B【點睛】本題主要考查異面直線的定義及所成的角和平面的基本性質(zhì),還考查了推理論證和運算求解的能力,屬于中檔題.4.A【解析】

設(shè),取與重合時的情況,計算出以及的值,利用排除法可得出正確選項.【詳解】如圖所示,利用排除法,取與重合時的情況.不妨設(shè),延長到,使得.,,,,則,由余弦定理得,,,又,,當平面平面時,,,排除B、D選項;因為,,此時,,當平面平面時,,,排除C選項.故選:A.【點睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計算公式、排除法,考查了空間想象能力、推理能力與計算能力,屬于難題.5.B【解析】

根據(jù)等差數(shù)列的性質(zhì)可得,由等差數(shù)列求和公式可得結(jié)果.【詳解】因為數(shù)列是等差數(shù)列,,所以,即,又,所以,,故故選:B【點睛】本題主要考查了等差數(shù)列的通項公式,性質(zhì),等差數(shù)列的和,屬于中檔題.6.B【解析】

分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當,不充分故是必要不充分條件,答案選B【點睛】本題考查了充分必要條件,屬于簡單題.7.A【解析】

利用平面向量平行的坐標條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標運算,屬于基礎(chǔ)題.8.A【解析】

點的坐標為,,展開利用均值不等式得到最值,將點代入雙曲線計算得到答案.【詳解】不妨設(shè)點的坐標為,由于為定值,由正弦定理可知當取得最大值時,的外接圓面積取得最小值,也等價于取得最大值,因為,,所以,當且僅當,即當時,等號成立,此時最大,此時的外接圓面積取最小值,點的坐標為,代入可得,.所以雙曲線的方程為.故選:【點睛】本題考查了求雙曲線方程,意在考查學生的計算能力和應(yīng)用能力.9.A【解析】

令,進而求得,再轉(zhuǎn)化為函數(shù)的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導數(shù)在研究函數(shù)最值中的應(yīng)用,考查了轉(zhuǎn)化的數(shù)學思想,恰當?shù)挠靡粋€未知數(shù)來表示和是本題的關(guān)鍵,屬于中檔題.10.C【解析】

求得等比數(shù)列的公比,然后利用等比數(shù)列的求和公式可求得的值.【詳解】設(shè)等比數(shù)列的公比為,,,,因此,.故選:C.【點睛】本題考查等比數(shù)列求和公式的應(yīng)用,解答的關(guān)鍵就是求出等比數(shù)列的公比,考查計算能力,屬于基礎(chǔ)題.11.C【解析】

根據(jù)題意,分別計算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數(shù),由分步計數(shù)原理計算可得答案.【詳解】解:根據(jù)題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【點睛】本題考查排列組合的應(yīng)用,涉及分步計數(shù)原理問題,屬于基礎(chǔ)題.12.B【解析】

設(shè),則,,因為,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設(shè),則,在中,易得,所以,解得(負值舍去),所以橢圓的離心率.故選B.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖像的對稱性,求得的最小值.【詳解】解:將函數(shù)的圖象沿軸向右平移個單位長度,可得的圖象.根據(jù)圖象與的圖象關(guān)于軸對稱,可得,,,即時,的最小值為.故答案為:.【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)圖像的對稱性,屬于基礎(chǔ)題.14.C【解析】

假設(shè)獲得一等獎的作品,判斷四位同學說對的人數(shù).【詳解】分別獲獎的說對人數(shù)如下表:獲獎作品ABCD甲對錯錯錯乙錯錯對錯丙對錯對錯丁對錯錯對說對人數(shù)3021故獲得一等獎的作品是C.【點睛】本題考查邏輯推理,常用方法有:1、直接推理結(jié)果,2、假設(shè)結(jié)果檢驗條件.15.【解析】

易知函數(shù)的定義域為,且,則是上的偶函數(shù).由于在上單調(diào)遞增,而在上也單調(diào)遞增,由復合函數(shù)的單調(diào)性知在上單調(diào)遞增,又在上單調(diào)遞增,故知在上單調(diào)遞增.令,知,則不等式可化為,即,可得,又,是偶函數(shù),可得,由在上單調(diào)遞增,可得,則,解得,故不等式的解集為.16.1【解析】試題分析:在中,,,在中,由正弦定理可得即解得,在中,.故答案為1.考點:正弦定理的應(yīng)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)分布列見解析,期望為.【解析】

(1)甲同學至少抽到2道B類題包含兩個事件:一個抽到2道B類題,一個是抽到3個B類題,計算出抽法數(shù)后可求得概率;(2)的所有可能值分別為,依次計算概率得分布列,再由期望公式計算期望.【詳解】(1)令“甲同學至少抽到2道B類題”為事件,則抽到2道類題有種取法,抽到3道類題有種取法,∴;(2)的所有可能值分別為,,,,,∴的分布列為:0123【點睛】本題考查古典概型,考查隨機變量的概率分布列和數(shù)學期望.解題關(guān)鍵是掌握相互獨立事件同時發(fā)生的概率計算公式.18.(Ⅰ)(Ⅱ)證明見解析【解析】

(Ⅰ)由an+2=(﹣1)n(an﹣1)+2an+1,對分奇偶討論,即可得;(Ⅱ)由(Ⅰ)得,用錯位相減法求出,運用分析法證明即可.【詳解】(Ⅰ),當為奇數(shù)時,,又由,得,當為偶數(shù)時,,又由a2=3,得,;(Ⅱ)由(1)得,則①②①-②可得:,,若證明Sn,則需要證明,又,即證明,即證,又顯然成立,故Sn得證.【點睛】本題主要考查了由遞推公式求通項公式,錯位相減法求前項和,分析法證明不等式,考查了分類討論的思想,考查了學生的運算求解與邏輯推理能力.19.(1)(2)【解析】

(1)因為,可得,即可求得答案;(2)分別設(shè)、的斜率為和,切點,,可得過點的拋物線的切線方程為:,聯(lián)立直線方程和拋物線方程,得到關(guān)于一元二次方程,根據(jù),求得,,進而求得切點,坐標,根據(jù)兩點間距離公式求得,根據(jù)點到直線距離公式求得點到切線的距離,進而求得的面積.【詳解】(1),,解得,拋物線的方程為.(2)由題意可知,、的斜率都存在,分別設(shè)為和,切點,,過點的拋物線的切線:,由,消掉,可得,,即,解得,,又由,得,,,同理可得,,,,,切線的方程為,點到切線的距離為,,即的面積為.【點睛】本題主要考查了求拋物線方程和拋物線中三角形面積問題,解題關(guān)鍵是掌握拋物線定義和圓錐曲線與直線交點問題時,通常用直線和圓錐曲線聯(lián)立方程組,通過韋達定理建立起目標的關(guān)系式20.解:設(shè)特征向量為α=對應(yīng)的特征值為λ,則=λ,即因為k≠0,所以a=2.5分因為,所以A=,即=,所以2+k=3,解得k=2.綜上,a=2,k=2.20分【解析】試題分析:由特征向量求矩陣A,由逆矩陣求k考點:特征向量,逆矩陣點評:本題主要考查了二階矩陣,以及特征值與特征向量的計算,考查逆矩陣.21.(1)(2)見證明【解析】

(1)利用零點分段法討論去掉絕對值求解;(2)利用絕對值不等式的性質(zhì)進行證明.【詳解】(1)解:當時,不等式可化為.當時,,,所以;當時,,.所以不等式的解集是.(2)證明:由,,得,,,又,所以,即.【點睛】本題主要考查含有絕對值不等式問題的求解,含有絕對值不等式的解法一般是使用零點分段討論法.22.(Ⅰ)(Ⅱ)見解析;(Ⅲ)見解析.【解析】試題分析:(Ⅰ)由題,所以故,,代入點斜式可得曲線在處的切線方程;(Ⅱ)由題(1)當時,在上單調(diào)遞增.則函數(shù)在上的最小值是(2)當時,令,即,令/

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論