



版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023學(xué)年高考數(shù)學(xué)模擬測(cè)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.等腰直角三角形BCD與等邊三角形ABD中,,,現(xiàn)將沿BD折起,則當(dāng)直線(xiàn)AD與平面BCD所成角為時(shí),直線(xiàn)AC與平面ABD所成角的正弦值為()A. B. C. D.2.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.633.將一張邊長(zhǎng)為的紙片按如圖(1)所示陰影部分裁去四個(gè)全等的等腰三角形,將余下部分沿虛線(xiàn)折疊并拼成一個(gè)有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是()A. B. C. D.4.已知復(fù)數(shù)滿(mǎn)足(是虛數(shù)單位),則=()A. B. C. D.5.函數(shù)的部分圖象大致為()A. B.C. D.6.設(shè),,,則()A. B. C. D.7.雙曲線(xiàn):(,)的一個(gè)焦點(diǎn)為(),且雙曲線(xiàn)的兩條漸近線(xiàn)與圓:均相切,則雙曲線(xiàn)的漸近線(xiàn)方程為()A. B. C. D.8.一個(gè)由兩個(gè)圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時(shí),液面以上空余部分的高為,如圖2放置容器時(shí),液面以上空余部分的高為,則()A. B. C. D.9.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.3 C. D.410.國(guó)務(wù)院發(fā)布《關(guān)于進(jìn)一步調(diào)整優(yōu)化結(jié)構(gòu)、提高教育經(jīng)費(fèi)使用效益的意見(jiàn)》中提出,要優(yōu)先落實(shí)教育投入.某研究機(jī)構(gòu)統(tǒng)計(jì)了年至年國(guó)家財(cái)政性教育經(jīng)費(fèi)投入情況及其在中的占比數(shù)據(jù),并將其繪制成下表,由下表可知下列敘述錯(cuò)誤的是()A.隨著文化教育重視程度的不斷提高,國(guó)在財(cái)政性教育經(jīng)費(fèi)的支出持續(xù)增長(zhǎng)B.年以來(lái),國(guó)家財(cái)政性教育經(jīng)費(fèi)的支出占比例持續(xù)年保持在以上C.從年至年,中國(guó)的總值最少增加萬(wàn)億D.從年到年,國(guó)家財(cái)政性教育經(jīng)費(fèi)的支出增長(zhǎng)最多的年份是年11.已知,則的值等于()A. B. C. D.12.已知雙曲線(xiàn),為坐標(biāo)原點(diǎn),、為其左、右焦點(diǎn),點(diǎn)在的漸近線(xiàn)上,,且,則該雙曲線(xiàn)的漸近線(xiàn)方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),滿(mǎn)足約束條件,若的最大值是10,則________.14.已知,則_____15.設(shè)函數(shù),若在上的最大值為,則________.16.若變量,滿(mǎn)足約束條件則的最大值是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)在曲線(xiàn)上,點(diǎn)在曲線(xiàn)上,且為正三角形.(1)求點(diǎn),的極坐標(biāo);(2)若點(diǎn)為曲線(xiàn)上的動(dòng)點(diǎn),為線(xiàn)段的中點(diǎn),求的最大值.18.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的值;(2)定義:若直線(xiàn)與曲線(xiàn)都相切,我們稱(chēng)直線(xiàn)為曲線(xiàn)、的公切線(xiàn),證明:曲線(xiàn)與總存在公切線(xiàn).19.(12分)三棱柱中,平面平面,,點(diǎn)為棱的中點(diǎn),點(diǎn)為線(xiàn)段上的動(dòng)點(diǎn).(1)求證:;(2)若直線(xiàn)與平面所成角為,求二面角的正切值.20.(12分)已知三棱錐P-ABC(如圖一)的平面展開(kāi)圖(如圖二)中,四邊形ABCD為邊長(zhǎng)等于的正方形,和均為正三角形,在三棱錐P-ABC中:(1)證明:平面平面ABC;(2)若點(diǎn)M在棱PA上運(yùn)動(dòng),當(dāng)直線(xiàn)BM與平面PAC所成的角最大時(shí),求直線(xiàn)MA與平面MBC所成角的正弦值.21.(12分)如圖,在四棱錐中,底面,,,,為的中點(diǎn),是上的點(diǎn).(1)若平面,證明:平面.(2)求二面角的余弦值.22.(10分)已知圓,定點(diǎn),為平面內(nèi)一動(dòng)點(diǎn),以線(xiàn)段為直徑的圓內(nèi)切于圓,設(shè)動(dòng)點(diǎn)的軌跡為曲線(xiàn)(1)求曲線(xiàn)的方程(2)過(guò)點(diǎn)的直線(xiàn)與交于兩點(diǎn),已知點(diǎn),直線(xiàn)分別與直線(xiàn)交于兩點(diǎn),線(xiàn)段的中點(diǎn)是否在定直線(xiàn)上,若存在,求出該直線(xiàn)方程;若不是,說(shuō)明理由.
2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【答案解析】
設(shè)E為BD中點(diǎn),連接AE、CE,過(guò)A作于點(diǎn)O,連接DO,得到即為直線(xiàn)AD與平面BCD所成角的平面角,根據(jù)題中條件求得相應(yīng)的量,分析得到即為直線(xiàn)AC與平面ABD所成角,進(jìn)而求得其正弦值,得到結(jié)果.【題目詳解】設(shè)E為BD中點(diǎn),連接AE、CE,由題可知,,所以平面,過(guò)A作于點(diǎn)O,連接DO,則平面,所以即為直線(xiàn)AD與平面BCD所成角的平面角,所以,可得,在中可得,又,即點(diǎn)O與點(diǎn)C重合,此時(shí)有平面,過(guò)C作與點(diǎn)F,又,所以,所以平面,從而角即為直線(xiàn)AC與平面ABD所成角,,故選:A.【答案點(diǎn)睛】該題考查的是有關(guān)平面圖形翻折問(wèn)題,涉及到的知識(shí)點(diǎn)有線(xiàn)面角的正弦值的求解,在解題的過(guò)程中,注意空間角的平面角的定義,屬于中檔題目.2、B【答案解析】
根據(jù)程序框圖中的循環(huán)結(jié)構(gòu)的運(yùn)算,直至滿(mǎn)足條件退出循環(huán)體,即可得出結(jié)果.【題目詳解】執(zhí)行程序框;;;;;,滿(mǎn)足,退出循環(huán),因此輸出,故選:B.【答案點(diǎn)睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果,模擬程序運(yùn)行是解題的關(guān)鍵,屬于基礎(chǔ)題.3、B【答案解析】設(shè)折成的四棱錐的底面邊長(zhǎng)為,高為,則,故由題設(shè)可得,所以四棱錐的體積,應(yīng)選答案B.4、A【答案解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【題目詳解】解:由,得,.故選.【答案點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.5、B【答案解析】
圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負(fù)情況?!绢}目詳解】,故奇函數(shù),四個(gè)圖像均符合。當(dāng)時(shí),,,排除C、D當(dāng)時(shí),,,排除A。故選B。【答案點(diǎn)睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調(diào)性、及特殊值。6、A【答案解析】
先利用換底公式將對(duì)數(shù)都化為以2為底,利用對(duì)數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關(guān)系.【題目詳解】,,,因此,故選:A.【答案點(diǎn)睛】本題主要考查了利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎(chǔ)題.7、A【答案解析】
根據(jù)題意得到,化簡(jiǎn)得到,得到答案.【題目詳解】根據(jù)題意知:焦點(diǎn)到漸近線(xiàn)的距離為,故,故漸近線(xiàn)為.故選:.【答案點(diǎn)睛】本題考查了直線(xiàn)和圓的位置關(guān)系,雙曲線(xiàn)的漸近線(xiàn),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.8、B【答案解析】
根據(jù)空余部分體積相等列出等式即可求解.【題目詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因?yàn)椋?故選:B【答案點(diǎn)睛】本題考查圓柱的體積,屬于基礎(chǔ)題.9、C【答案解析】
首先把三視圖轉(zhuǎn)換為幾何體,該幾何體為由一個(gè)三棱柱體,切去一個(gè)三棱錐體,由柱體、椎體的體積公式進(jìn)一步求出幾何體的體積.【題目詳解】解:根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為由一個(gè)三棱柱體,切去一個(gè)三棱錐體,如圖所示:故:.故選:C.【答案點(diǎn)睛】本題考查了由三視圖求幾何體的體積、需熟記柱體、椎體的體積公式,考查了空間想象能力,屬于基礎(chǔ)題.10、C【答案解析】
觀(guān)察圖表,判斷四個(gè)選項(xiàng)是否正確.【題目詳解】由表易知、、項(xiàng)均正確,年中國(guó)為萬(wàn)億元,年中國(guó)為萬(wàn)億元,則從年至年,中國(guó)的總值大約增加萬(wàn)億,故C項(xiàng)錯(cuò)誤.【答案點(diǎn)睛】本題考查統(tǒng)計(jì)圖表,正確認(rèn)識(shí)圖表是解題基礎(chǔ).11、A【答案解析】
由余弦公式的二倍角可得,,再由誘導(dǎo)公式有,所以【題目詳解】∵∴由余弦公式的二倍角展開(kāi)式有又∵∴故選:A【答案點(diǎn)睛】本題考查了學(xué)生對(duì)二倍角公式的應(yīng)用,要求學(xué)生熟練掌握三角函數(shù)中的誘導(dǎo)公式,屬于簡(jiǎn)單題12、D【答案解析】
根據(jù),先確定出的長(zhǎng)度,然后利用雙曲線(xiàn)定義將轉(zhuǎn)化為的關(guān)系式,化簡(jiǎn)后可得到的值,即可求漸近線(xiàn)方程.【題目詳解】如圖所示:因?yàn)?,所以,又因?yàn)椋?,所以,所以,所以,所以,所以,所以漸近線(xiàn)方程為.故選:D.【答案點(diǎn)睛】本題考查根據(jù)雙曲線(xiàn)中的長(zhǎng)度關(guān)系求解漸近線(xiàn)方程,難度一般.注意雙曲線(xiàn)的焦點(diǎn)到漸近線(xiàn)的距離等于虛軸長(zhǎng)度的一半.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】
畫(huà)出不等式組表示的平面區(qū)域,數(shù)形結(jié)合即可容易求得結(jié)果.【題目詳解】畫(huà)出不等式組表示的平面區(qū)域如下所示:目標(biāo)函數(shù)可轉(zhuǎn)化為與直線(xiàn)平行,數(shù)形結(jié)合可知當(dāng)且僅當(dāng)目標(biāo)函數(shù)過(guò)點(diǎn),取得最大值,故可得,解得.故答案為:.【答案點(diǎn)睛】本題考查由目標(biāo)函數(shù)的最值求參數(shù)值,屬基礎(chǔ)題.14、【答案解析】
化簡(jiǎn)得,利用周期即可求出答案.【題目詳解】解:,∴函數(shù)的最小正周期為6,∴,,故答案為:.【答案點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.15、【答案解析】
求出函數(shù)的導(dǎo)數(shù),由在上,可得在上單調(diào)遞增,則函數(shù)最大值為,即可求出參數(shù)的值.【題目詳解】解:定義域?yàn)椋谏蠁握{(diào)遞增,故在上的最大值為故答案為:【答案點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,屬于基礎(chǔ)題.16、9【答案解析】
做出滿(mǎn)足條件的可行域,根據(jù)圖形,即可求出的最大值.【題目詳解】做出不等式組表示的可行域,如圖陰影部分所示,目標(biāo)函數(shù)過(guò)點(diǎn)時(shí)取得最大值,聯(lián)立,解得,即,所以最大值為9.故答案為:9.【答案點(diǎn)睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線(xiàn)性目標(biāo)函數(shù)的最值,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2).【答案解析】
(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,即得解;(2)設(shè)點(diǎn)的直角坐標(biāo)為,則點(diǎn)的直角坐標(biāo)為.將此代入曲線(xiàn)的方程,可得點(diǎn)在以為圓心,為半徑的圓上,所以的最大值為,即得解.【題目詳解】(1)因?yàn)辄c(diǎn)在曲線(xiàn)上,為正三角形,所以點(diǎn)在曲線(xiàn)上.又因?yàn)辄c(diǎn)在曲線(xiàn)上,所以點(diǎn)的極坐標(biāo)是,從而,點(diǎn)的極坐標(biāo)是.(2)由(1)可知,點(diǎn)的直角坐標(biāo)為,B的直角坐標(biāo)為設(shè)點(diǎn)的直角坐標(biāo)為,則點(diǎn)的直角坐標(biāo)為.將此代入曲線(xiàn)的方程,有即點(diǎn)在以為圓心,為半徑的圓上.,所以的最大值為.【答案點(diǎn)睛】本題考查了極坐標(biāo)和參數(shù)方程綜合,考查了極坐標(biāo)和直角坐標(biāo)互化,參數(shù)方程的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.18、(1);(2)見(jiàn)解析.【答案解析】
(1)求出導(dǎo)數(shù),問(wèn)題轉(zhuǎn)化為在上恒成立,利用導(dǎo)數(shù)求出的最小值即可求解;(2)分別設(shè)切點(diǎn)橫坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義寫(xiě)出切線(xiàn)方程,問(wèn)題轉(zhuǎn)化為證明兩直線(xiàn)重合,只需滿(mǎn)足有解即可,利用函數(shù)的導(dǎo)數(shù)及零點(diǎn)存在性定理即可證明存在.【題目詳解】(1),函數(shù)在上單調(diào)遞增等價(jià)于在上恒成立.令,得,所以在單調(diào)遞減,在單調(diào)遞增,則.因?yàn)?,則在上恒成立等價(jià)于在上恒成立;又,所以,即.(2)設(shè)的切點(diǎn)橫坐標(biāo)為,則切線(xiàn)方程為……①設(shè)的切點(diǎn)橫坐標(biāo)為,則,切線(xiàn)方程為……②若存在,使①②成為同一條直線(xiàn),則曲線(xiàn)與存在公切線(xiàn),由①②得消去得即令,則所以,函數(shù)在區(qū)間上單調(diào)遞增,,使得時(shí)總有又時(shí),在上總有解綜上,函數(shù)與總存在公切線(xiàn).【答案點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的恒成立問(wèn)題,導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)證明方程有解,屬于難題.19、(1)見(jiàn)解析;(2)【答案解析】
(1)可證面,從而可得.(2)可證點(diǎn)為線(xiàn)段的三等分點(diǎn),再過(guò)作于,過(guò)作,垂足為,則為二面角的平面角,利用解直角三角形的方法可求.也可以建立如圖所示的空間直角坐標(biāo)系,利用兩個(gè)平面的法向量來(lái)計(jì)算二面角的平面角的余弦值,最后利用同角三角函數(shù)的基本關(guān)系式可求.【題目詳解】證明:(1)因?yàn)闉橹悬c(diǎn),所以.因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,而平面,故,又因?yàn)?,所以,則,又,故面,又面,所以.(2)由(1)可得:面在面內(nèi)的射影為,則為直線(xiàn)與平面所成的角,即.因?yàn)?,所以,所以,所以,即點(diǎn)為線(xiàn)段的三等分點(diǎn).解法一:過(guò)作于,則平面,所以,過(guò)作,垂足為,則為二面角的平面角,因?yàn)?,,,則在中,有,所以二面角的平面角的正切值為.解法二:以點(diǎn)為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,設(shè)點(diǎn),由得:,即,,,點(diǎn),平面的一個(gè)法向量,又,,設(shè)平面的一個(gè)法向量為,則,令,則平面的一個(gè)法向量為.設(shè)二面角的平面角為,則,即,所以二面角的正切值為.【答案點(diǎn)睛】線(xiàn)線(xiàn)垂直的判定可由線(xiàn)面垂直得到,也可以由兩條線(xiàn)所成的角為得到,而線(xiàn)面垂直又可以由面面垂直得到,解題中注意三種垂直關(guān)系的轉(zhuǎn)化.空間中的角的計(jì)算,可以建立空間直角坐標(biāo)系把角的計(jì)算歸結(jié)為向量的夾角的計(jì)算,也可以構(gòu)建空間角,把角的計(jì)算歸結(jié)平面圖形中的角的計(jì)算.20、(1)見(jiàn)解析(2)【答案解析】
(1)設(shè)的中點(diǎn)為,連接.由展開(kāi)圖可知,,.為的中點(diǎn),則有,根據(jù)勾股定理可證得,則平面,即可證得平面平面.(2)由線(xiàn)面成角的定義可知是直線(xiàn)與平面所成的角,且,最大即為最短時(shí),即是的中點(diǎn)建立空間直角坐標(biāo)系,求出與平面的法向量利用公式即可求得結(jié)果.【題目詳解】(1)設(shè)AC的中點(diǎn)為O,連接BO,PO.由題意,得,,.在中,,O為AC的中點(diǎn),,在中,,,,,.,平面,平面ABC,平面PAC,平面平面ABC.(2)由(1)知,,,平面PAC,是直線(xiàn)BM與平面PAC所成的角,且,當(dāng)OM最短時(shí),即M是PA的中點(diǎn)時(shí),最大.由平面ABC,,,,于是以O(shè)C,OB,OD所在直線(xiàn)分別為x軸,y軸,z軸建立如圖示空間直角坐標(biāo)系,則,,設(shè)平面MBC的法向量為,直線(xiàn)MA與平面MBC所成角為,則由得:.令,得,,即.則.直線(xiàn)MA與平面MBC所成角的正弦值為.【答案點(diǎn)睛】本題考查面面垂直的證明,考查線(xiàn)面成角問(wèn)題,借助空間向量是解決線(xiàn)面成角問(wèn)題的關(guān)鍵,難度一般.21、(1)證明見(jiàn)解析(2)【答案解析】
(1)因?yàn)?,利用線(xiàn)面平行的判定定理可證出平面,利用點(diǎn)線(xiàn)面的位置關(guān)系,得出和,由于底面,利用線(xiàn)面垂直的性質(zhì),得出,且,最后結(jié)合線(xiàn)面垂直的判定定理得出平面,即可證出平面.(2)由(1)可知,,兩兩垂直,建立空間直角坐標(biāo)系,標(biāo)出點(diǎn)坐標(biāo),運(yùn)用空間向量坐標(biāo)運(yùn)算求出所需向量,分別求出平面和平面的法向量,最后利用空間二面角公式,即可求出的余弦值.【題目詳解】(1)證明:因?yàn)椋矫?,平?r
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年南昌貨車(chē)上崗證理論模擬考試題庫(kù)
- 房屋買(mǎi)賣(mài)的委托書(shū)
- 集成功率放大電路型號(hào)
- 激光測(cè)距傳感器應(yīng)用場(chǎng)景
- 借款擔(dān)保合同起訴狀
- 公司管理制度寫(xiě)真板
- 超市入庫(kù)盤(pán)庫(kù)管理制度
- 項(xiàng)目單位日常管理制度
- 進(jìn)廠(chǎng)門(mén)衛(wèi)日常管理制度
- 西藏社區(qū)消防管理制度
- 《中央八項(xiàng)規(guī)定精神學(xué)習(xí)教育》專(zhuān)項(xiàng)講座
- 勞務(wù)派遣勞務(wù)外包項(xiàng)目方案投標(biāo)文件(技術(shù)方案)
- 定額〔2025〕1號(hào)文-關(guān)于發(fā)布2018版電力建設(shè)工程概預(yù)算定額2024年度價(jià)格水平調(diào)整的通知
- 一種基于STM32的智能門(mén)鎖系統(tǒng)的設(shè)計(jì)-畢業(yè)論文
- 道路標(biāo)線(xiàn)標(biāo)識(shí)檢驗(yàn)批質(zhì)量驗(yàn)收記錄
- 勞動(dòng)者就業(yè)登記表(通用模板)
- 環(huán)刀法壓實(shí)度檢測(cè)記錄表
- 生育保險(xiǎn)待遇申請(qǐng)表
- 會(huì)考學(xué)業(yè)水平測(cè)試成績(jī)單英文模板
- 80m3液化石油儲(chǔ)罐結(jié)構(gòu)設(shè)計(jì)及焊接工藝設(shè)計(jì)
- 輸電線(xiàn)路跨越河流施工方案設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論