2022年黑龍江省哈爾濱市第三十二中學(xué)數(shù)學(xué)高三第一學(xué)期期末經(jīng)典試題含解析_第1頁(yè)
2022年黑龍江省哈爾濱市第三十二中學(xué)數(shù)學(xué)高三第一學(xué)期期末經(jīng)典試題含解析_第2頁(yè)
2022年黑龍江省哈爾濱市第三十二中學(xué)數(shù)學(xué)高三第一學(xué)期期末經(jīng)典試題含解析_第3頁(yè)
2022年黑龍江省哈爾濱市第三十二中學(xué)數(shù)學(xué)高三第一學(xué)期期末經(jīng)典試題含解析_第4頁(yè)
2022年黑龍江省哈爾濱市第三十二中學(xué)數(shù)學(xué)高三第一學(xué)期期末經(jīng)典試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)的圖象如圖所示,則可以為()A. B. C. D.2.已知是虛數(shù)單位,若,則()A. B.2 C. D.33.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.74.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為,則該三棱錐外接球的表面積為()A. B. C. D.5.馬林●梅森是17世紀(jì)法國(guó)著名的數(shù)學(xué)家和修道士,也是當(dāng)時(shí)歐洲科學(xué)界一位獨(dú)特的中心人物,梅森在歐幾里得、費(fèi)馬等人研究的基礎(chǔ)上對(duì)2p﹣1作了大量的計(jì)算、驗(yàn)證工作,人們?yōu)榱思o(jì)念梅森在數(shù)論方面的這一貢獻(xiàn),將形如2P﹣1(其中p是素?cái)?shù))的素?cái)?shù),稱(chēng)為梅森素?cái)?shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是()A.3 B.4 C.5 D.66.第24屆冬奧會(huì)將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運(yùn)會(huì)會(huì)旗中五環(huán)所占面積與單獨(dú)五個(gè)環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實(shí)驗(yàn):通過(guò)計(jì)算機(jī)模擬在長(zhǎng)為10,寬為6的長(zhǎng)方形奧運(yùn)會(huì)旗內(nèi)隨機(jī)取N個(gè)點(diǎn),經(jīng)統(tǒng)計(jì)落入五環(huán)內(nèi)部及其邊界上的點(diǎn)數(shù)為n個(gè),已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.7.若θ是第二象限角且sinθ=,則=A. B. C. D.8.已知圓與拋物線的準(zhǔn)線相切,則的值為()A.1 B.2 C. D.49.下列命題中,真命題的個(gè)數(shù)為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.310.設(shè)m,n為直線,、為平面,則的一個(gè)充分條件可以是()A.,, B.,C., D.,11.下邊程序框圖的算法源于我國(guó)古代的中國(guó)剩余定理.把運(yùn)算“正整數(shù)除以正整數(shù)所得的余數(shù)是”記為“”,例如.執(zhí)行該程序框圖,則輸出的等于()A.16 B.17 C.18 D.1912.已知命題:,,則為()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.正四棱柱中,,.若是側(cè)面內(nèi)的動(dòng)點(diǎn),且,則與平面所成角的正切值的最大值為_(kāi)__________.14.已知函數(shù),若函數(shù)有個(gè)不同的零點(diǎn),則的取值范圍是___________.15.在中,角,,的對(duì)邊長(zhǎng)分別為,,,滿(mǎn)足,,則的面積為_(kāi)_.16.如圖,是圓的直徑,弦的延長(zhǎng)線相交于點(diǎn)垂直的延長(zhǎng)線于點(diǎn).求證:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,,,,底面為正方形,、分別為、的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.18.(12分)的內(nèi)角的對(duì)邊分別為,已知.(1)求的大??;(2)若,求面積的最大值.19.(12分)已知在中,a、b、c分別為角A、B、C的對(duì)邊,且.(1)求角A的值;(2)若,設(shè)角,周長(zhǎng)為y,求的最大值.20.(12分)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過(guò)300瓶的概率;(2)設(shè)六月份一天銷(xiāo)售這種酸奶的利潤(rùn)為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫(xiě)出Y的所有可能值,并估計(jì)Y大于零的概率.21.(12分)已知直線與拋物線交于兩點(diǎn).(1)當(dāng)點(diǎn)的橫坐標(biāo)之和為4時(shí),求直線的斜率;(2)已知點(diǎn),直線過(guò)點(diǎn),記直線的斜率分別為,當(dāng)取最大值時(shí),求直線的方程.22.(10分)已知,函數(shù)有最小值7.(1)求的值;(2)設(shè),,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調(diào)遞增,且有一個(gè)零點(diǎn),即可對(duì)選項(xiàng)逐個(gè)驗(yàn)證即可得出.【詳解】首先對(duì)4個(gè)選項(xiàng)進(jìn)行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個(gè)選項(xiàng),對(duì)其在上的零點(diǎn)個(gè)數(shù)進(jìn)行判斷,在上無(wú)零點(diǎn),不符合題意,排除D;然后,對(duì)剩下的2個(gè)選項(xiàng),進(jìn)行單調(diào)性判斷,在上單調(diào)遞減,不符合題意,排除C.故選:A.【點(diǎn)睛】本題主要考查圖象的識(shí)別和函數(shù)性質(zhì)的判斷,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于容易題.2、A【解析】

直接將兩邊同時(shí)乘以求出復(fù)數(shù),再求其模即可.【詳解】解:將兩邊同時(shí)乘以,得故選:A【點(diǎn)睛】考查復(fù)數(shù)的運(yùn)算及其模的求法,是基礎(chǔ)題.3、C【解析】

根據(jù)程序框圖程序運(yùn)算即可得.【詳解】依程序運(yùn)算可得:,故選:C【點(diǎn)睛】本題主要考查了程序框圖的計(jì)算,解題的關(guān)鍵是理解程序框圖運(yùn)行的過(guò)程.4、C【解析】

作出三棱錐的實(shí)物圖,然后補(bǔ)成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球?yàn)橥粋€(gè)球,然后計(jì)算出矩形的外接圓直徑,利用公式可計(jì)算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實(shí)物圖如下圖所示:將其補(bǔ)成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點(diǎn)睛】本題考查三棱錐外接球的表面積,解題時(shí)要結(jié)合三視圖作出三棱錐的實(shí)物圖,并分析三棱錐的結(jié)構(gòu),選擇合適的模型進(jìn)行計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.5、C【解析】

模擬程序的運(yùn)行即可求出答案.【詳解】解:模擬程序的運(yùn)行,可得:p=1,S=1,輸出S的值為1,滿(mǎn)足條件p≤7,執(zhí)行循環(huán)體,p=3,S=7,輸出S的值為7,滿(mǎn)足條件p≤7,執(zhí)行循環(huán)體,p=5,S=31,輸出S的值為31,滿(mǎn)足條件p≤7,執(zhí)行循環(huán)體,p=7,S=127,輸出S的值為127,滿(mǎn)足條件p≤7,執(zhí)行循環(huán)體,p=9,S=511,輸出S的值為511,此時(shí),不滿(mǎn)足條件p≤7,退出循環(huán),結(jié)束,故若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是5,故選:C.【點(diǎn)睛】本題主要考查程序框圖,屬于基礎(chǔ)題.6、B【解析】

根據(jù)比例關(guān)系求得會(huì)旗中五環(huán)所占面積,再計(jì)算比值.【詳解】設(shè)會(huì)旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點(diǎn)睛】本題考查面積型幾何概型的問(wèn)題求解,屬基礎(chǔ)題.7、B【解析】由θ是第二象限角且sinθ=知:,.所以.8、B【解析】

因?yàn)閳A與拋物線的準(zhǔn)線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?、C【解析】

否命題與逆命題是等價(jià)命題,寫(xiě)出①的逆命題,舉反例排除;原命題與逆否命題是等價(jià)命題,寫(xiě)出②的逆否命題后,利用指數(shù)函數(shù)單調(diào)性驗(yàn)證正確;寫(xiě)出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點(diǎn)睛】本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個(gè)命題的真假時(shí),首先要弄清命題的結(jié)構(gòu),即它的條件和結(jié)論分別是什么,然后聯(lián)系其他相關(guān)的知識(shí)進(jìn)行判斷.(2)當(dāng)一個(gè)命題改寫(xiě)成“若,則”的形式之后,判斷這個(gè)命題真假的方法:①若由“”經(jīng)過(guò)邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.10、B【解析】

根據(jù)線面垂直的判斷方法對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).【詳解】對(duì)于A選項(xiàng),當(dāng),,時(shí),由于不在平面內(nèi),故無(wú)法得出.對(duì)于B選項(xiàng),由于,,所以.故B選項(xiàng)正確.對(duì)于C選項(xiàng),當(dāng),時(shí),可能含于平面,故無(wú)法得出.對(duì)于D選項(xiàng),當(dāng),時(shí),無(wú)法得出.綜上所述,的一個(gè)充分條件是“,”故選:B【點(diǎn)睛】本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎(chǔ)題.11、B【解析】

由已知中的程序框圖可知,該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量的值,模擬程序的運(yùn)行過(guò)程,代入四個(gè)選項(xiàng)進(jìn)行驗(yàn)證即可.【詳解】解:由程序框圖可知,輸出的數(shù)應(yīng)為被3除余2,被5除余2的且大于10的最小整數(shù).若輸出,則不符合題意,排除;若輸出,則,符合題意.故選:B.【點(diǎn)睛】本題考查了程序框圖.當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時(shí),常采用循環(huán)模擬或代入選項(xiàng)驗(yàn)證的方法進(jìn)行解答.12、C【解析】

根據(jù)全稱(chēng)量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱(chēng)量詞命題的否定是存在量詞命題,且命題:,,.故選:.【點(diǎn)睛】本題考查含有一個(gè)量詞的命題的否定,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2.【解析】

如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),則,,又,得即;又平面,為與平面所成角,令,當(dāng)時(shí),最大,即與平面所成角的正切值的最大值為2.故答案為:2【點(diǎn)睛】本題主要考查了立體幾何中的動(dòng)點(diǎn)問(wèn)題,考查了直線與平面所成角的計(jì)算.對(duì)于這類(lèi)題,一般是建立空間直角坐標(biāo),在動(dòng)點(diǎn)坐標(biāo)內(nèi)引入?yún)?shù),將最值問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題求解,考查了學(xué)生的運(yùn)算求解能力和直觀想象能力.14、【解析】

作出函數(shù)的圖象及直線,如下圖所示,因?yàn)楹瘮?shù)有個(gè)不同的零點(diǎn),所以由圖象可知,,,所以.15、.【解析】

由二次方程有解的條件,結(jié)合輔助角公式和正弦函數(shù)的值域可求,進(jìn)而可求,然后結(jié)合余弦定理可求,代入,計(jì)算可得所求.【詳解】解:把看成關(guān)于的二次方程,則,即,即為,化為,而,則,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(負(fù)的舍去),.故答案為.【點(diǎn)睛】本題主要考查一元二次方程的根的存在條件及輔助角公式及余弦定理和三角形的面積公式的應(yīng)用,屬于中檔題.16、證明見(jiàn)解析.【解析】試題分析:四點(diǎn)共圓,所以,又△∽△,所以,即,得證.試題解析:A.連接,因?yàn)闉閳A的直徑,所以,又,則四點(diǎn)共圓,所以.又△∽△,所以,即,∴.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2).【解析】

(1)利用中位線的性質(zhì)得出,然后利用線面平行的判定定理可證明出平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),利用空間向量法可求得直線與平面所成角的正弦值.【詳解】(1)因?yàn)?、分別為、的中點(diǎn),所以.又因?yàn)槠矫?,平面,所以平面;?)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),則,,,,,,,.設(shè)平面的法向量為,則,即,令,則,,所以.設(shè)直線與平面所成角為,所以.因此,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明,同時(shí)也考查了利用空間向量法計(jì)算直線與平面所成的角,考查推理能力與計(jì)算能力,屬于中等題.18、(1);(2).【解析】

(1)利用正弦定理將邊化角,結(jié)合誘導(dǎo)公式可化簡(jiǎn)邊角關(guān)系式,求得,根據(jù)可求得結(jié)果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面積公式可求得結(jié)果.【詳解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(當(dāng)且僅當(dāng)時(shí)取等號(hào))即三角形面積的最大值為:【點(diǎn)睛】本題考查解三角形的相關(guān)知識(shí),涉及到正弦定理化簡(jiǎn)邊角關(guān)系式、余弦定理解三角形、三角形面積公式應(yīng)用、基本不等式求積的最大值、誘導(dǎo)公式的應(yīng)用等知識(shí),屬于??碱}型.19、(1);(2).【解析】

(1)利用正弦定理,結(jié)合題中條件,可以得到,之后應(yīng)用余弦定理即可求得;(2)利用正弦定理求得,求出三角形的周長(zhǎng),利用三角函數(shù)的最值求解即可.【詳解】(1)由已知可得,結(jié)合正弦定理可得,∴,又,∴.(2)由,及正弦定理得,∴,,故,即,由,得,∴當(dāng),即時(shí),.【點(diǎn)睛】該題主要考查的是有關(guān)解三角形的問(wèn)題,解題的關(guān)鍵是掌握正余弦定理,屬于簡(jiǎn)單題目.20、(1).(2).【解析】

(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過(guò)300瓶的概率.(2)當(dāng)溫度大于等于25℃時(shí),需求量為500,求出Y=900元;當(dāng)溫度在[20,25)℃時(shí),需求量為300,求出Y=300元;當(dāng)溫度低于20℃時(shí),需求量為200,求出Y=﹣100元,從而當(dāng)溫度大于等于20時(shí),Y>0,由此能估計(jì)估計(jì)Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種酸奶一天的需求量不超過(guò)300瓶的概率p.(2)當(dāng)溫度大于等于25℃時(shí),需求量為500,Y=450×2=900元,當(dāng)溫度在[20,25)℃時(shí),需求量為300

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論