版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.點關(guān)于軸對稱的點的坐標(biāo)是()A. B. C. D.2.有三張正面分別標(biāo)有數(shù)字-2,3,4的不透明卡片,它們除數(shù)字不同外,其余全部相同,現(xiàn)將它們背面朝上洗勻后,從中任取一張(不放回),再從剩余的卡片中任取一張,則兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是()A. B. C. D.3.如圖,AB是⊙O的弦,∠BAC=30°,BC=2,則⊙O的直徑等于()A.2 B.3 C.4 D.64.從一組數(shù)據(jù)1,2,2,3中任意取走一個數(shù),剩下三個數(shù)不變的是()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差5.關(guān)于x的一元二次方程x2+bx-6=0的一個根為2,則b的值為()A.-2 B.2 C.-1 D.16.如圖,四邊形與四邊形是位似圖形,則位似中心是()A.點 B.點 C.點 D.點7.拋物線向右平移4個單位長度后與拋物線重合,若(-1,3)在拋物線上,則下列點中,一定在拋物線上的是()A.(3,3) B.(3,-1) C.(-1,7) D.(-5,3)8.若二次函數(shù)的圖象如圖,與x軸的一個交點為(1,0),則下列各式中不成立的是()A. B. C. D.9.四邊形ABCD的對角線互相平分,要使它變?yōu)榫匦?,需要添加的條件是(
)A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD10.在學(xué)校組織的實踐活動中,小新同學(xué)用紙板制作了一個圓錐模型,它的底面半徑為1,母線長為1.則這個圓錐的側(cè)面積是()A.4π B.1π C.π D.2π11.拋物線的頂點坐標(biāo)是()A.(2,?0) B.(-2,?0) C.(0,?2) D.(0,?-2)12.關(guān)于x的一元二次方程ax2﹣4x+1=0有實數(shù)根,則整數(shù)a的最大值是()A.1 B.﹣4 C.3 D.4二、填空題(每題4分,共24分)13.一元二次方程的根是.14.如圖,⊙O的內(nèi)接四邊形ABCD中,∠A=110°,則∠BOD等于________°.15.若兩個相似三角形的周長比為2:3,則它們的面積比是_________.16.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標(biāo)軸的交點,拋物線的解析式為y=(x﹣1)2﹣4,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為_____.17.若是方程的一個根.則的值是________.18.有一個能自由轉(zhuǎn)動的轉(zhuǎn)盤如圖,盤面被分成8個大小與性狀都相同的扇形,顏色分為黑白兩種,將指針的位置固定,讓轉(zhuǎn)盤自由轉(zhuǎn)動,當(dāng)它停止后,指針指向白色扇形的概率是.三、解答題(共78分)19.(8分)(1)問題發(fā)現(xiàn):如圖1,在等腰直角三角形中,,將邊繞點順時針旋轉(zhuǎn)90°得到線段,連接,則的面積為__________;(請用含的式子表示的面積;提示:過點作邊上的高)(2)類比探究:如圖2,在一般的中,,將邊繞點順時針旋轉(zhuǎn)90°得到線段,連接.(1)中的結(jié)論是否成立,若成立,請說明理由.(3)拓展應(yīng)用:如圖3,在等腰三角形中,,將邊繞點順時針旋轉(zhuǎn)90°得到線段,連接.試直接用含的式子表示的面積.(不寫探究過程)20.(8分)如圖,是的直徑,點在上且,連接,過點作交的延長線于點.求證:是的切線;
21.(8分)如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過O點作OF⊥AB交⊙O于點D,交AC于點E,交BC的延長線于點F,點G是EF的中點,連接CG(1)判斷CG與⊙O的位置關(guān)系,并說明理由;(2)求證:2OB2=BC?BF;(3)如圖2,當(dāng)∠DCE=2∠F,CE=3,DG=2.5時,求DE的長.22.(10分)下面是小東設(shè)計的“過圓外一點作這個圓的兩條切線”的尺規(guī)作圖過程.已知:⊙O及⊙O外一點P.求作:直線PA和直線PB,使PA切⊙O于點A,PB切⊙O于點B.作法:如圖,①連接OP,分別以點O和點P為圓心,大于OP的同樣長為半徑作弧,兩弧分別交于點M,N;②連接MN,交OP于點Q,再以點Q為圓心,OQ的長為半徑作弧,交⊙O于點A和點B;③作直線PA和直線PB.所以直線PA和PB就是所求作的直線.根據(jù)小東設(shè)計的尺規(guī)作圖過程,(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)(2)完成下面的證明.證明:∵OP是⊙Q的直徑,∴∠OAP=∠OBP=________°()(填推理的依據(jù)).∴PA⊥OA,PB⊥OB.∵OA,OB為⊙O的半徑,∴PA,PB是⊙O的切線.23.(10分)目前“微信”、“支付寶”、“共享單車“和“網(wǎng)購”給我們的生活帶來了很多便利,九年級數(shù)學(xué)興趣小組在校內(nèi)對“你最認(rèn)可的四大新生事物”進行調(diào)查,隨機調(diào)查了m人(每名學(xué)生必選一種且只能從這四種中選擇一種),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.(1)根據(jù)圖中信息求出m=,n=;(2)請你幫助他們將這兩個統(tǒng)計圖補全;(3)已知A、B兩位同學(xué)都最認(rèn)可“微信”,C同學(xué)最認(rèn)可“支付寶”,D同學(xué)最認(rèn)可“網(wǎng)購”,從這四名同學(xué)中抽取兩名同學(xué),請你通過樹狀圖或表格,求出這兩位同學(xué)最認(rèn)可的新生事物不一樣的概率.24.(10分)有兩個口袋,口袋中裝有兩個分別標(biāo)有數(shù)字2,3的小球,口袋中裝有三個分別標(biāo)有數(shù)字的小球(每個小球質(zhì)量、大小、材質(zhì)均相同).小明先從口袋中隨機取出一個小球,用表示所取球上的數(shù)字;再從口袋中順次取出兩個小球,用表示所取兩個小球上的數(shù)字之和.(1)用樹狀圖法或列表法表示小明所取出的三個小球的所有可能結(jié)果;(2)求的值是整數(shù)的概率.25.(12分)隨著冬季的來臨,為了方便冰雪愛好者雪上娛樂,某體育用品商店購進一批簡易滑雪板,每件進價為100元,售價為130元,每星期可賣出80件,由于商品庫存較多,商家決定降價促銷,根據(jù)市場調(diào)查,每件降價1元,每星期可多賣出4件.(1)設(shè)商家每件滑雪板降價x元,每星期的銷售量為y件,寫出y與x之間的函數(shù)關(guān)系式:(2)降價后,商家要使每星期的利潤最大,應(yīng)將售價定為每件多少元?最大銷售利潤多少?26.如圖,在△ABC中,∠B=45°,AC=5,cosC=,AD是BC邊上的高線.(1)求AD的長;(2)求△ABC的面積.
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)特殊銳角的三角函數(shù)值,先確定點M的坐標(biāo),然后根據(jù)關(guān)于x軸對稱的點的坐標(biāo)x值不變,y值互為相反數(shù)的特點進行選擇即可.【詳解】因為,所以,所以點所以關(guān)于x軸的對稱點為故選D.【點睛】本題考查的是特殊角三角函數(shù)值和關(guān)于x軸對稱的點的坐標(biāo)特點,熟練掌握三角函數(shù)值是解題的關(guān)鍵.2、C【詳解】畫樹狀圖得:
∵共有6種等可能的結(jié)果,兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的有2種情況,
∴兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是:.故選C.【點睛】本題考查運用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.3、C【分析】如圖,作直徑BD,連接CD,根據(jù)圓周角定理得到∠D=∠BAC=30°,∠BCD=90°,根據(jù)直角三角形的性質(zhì)解答.【詳解】如圖,作直徑BD,連接CD,∵∠BDC和∠BAC是所對的圓周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直徑,∠BCD是BD所對的圓周角,∴∠BCD=90°,∴BD=2BC=4,故選:C.【點睛】本題考查圓周角定理,在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;半圓(或直徑)所對的圓周角是直角;90°圓周角所對的弦是直徑;熟練掌握圓周角定理是解題關(guān)鍵.4、C【分析】根據(jù)中位數(shù)的定義求解可得.【詳解】原來這組數(shù)據(jù)的中位數(shù)為=2,無論去掉哪個數(shù)據(jù),剩余三個數(shù)的中位數(shù)仍然是2,故選:C.【點睛】此題考查數(shù)據(jù)平均數(shù)、眾數(shù)、中位數(shù)方差的計算方法,掌握正確的計算方法才能解答.5、D【分析】根據(jù)一元二次方程的解的定義,把x=2代入方程得到關(guān)于b的一次方程,然后解一次方程即可.【詳解】解:把x=2代入程x2+bx-6=0得4+2b-6=0,解得b=1.故選:D.【點睛】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.6、B【分析】根據(jù)位似圖形的定義:如果兩個圖形不僅是相似圖形,而且每組對應(yīng)點的連線交于一點,對應(yīng)邊互相平行或在一條直線上,那么這兩個圖形叫做位似圖形,這個點叫做位似中心,判斷即可.【詳解】解:由圖可知,對應(yīng)邊AG與CE的延長線交于點B,∴點B為位似中心故選B.【點睛】此題考查的是找位似圖形的位似中心,掌握位似圖形的定義是解決此題的關(guān)鍵.7、A【分析】利用點的平移進行解答即可.【詳解】解:∵拋物線向右平移4個單位長度后與拋物線重合∴將(-1,3)向右平移4個單位長度的點在拋物線上∴(3,3)在拋物線上故選:A【點睛】本題考查了點的平移與函數(shù)平移規(guī)律,掌握點的規(guī)律是解題的關(guān)鍵.8、B【分析】根據(jù)二次函數(shù)圖象開口方向與坐標(biāo)軸的交點坐標(biāo)特點,利用排除法可解答.【詳解】解:∵拋物線與x軸有兩個交點,∴,故A正確,不符合題意;∵函數(shù)圖象開口向下,
∴a<0,∵拋物線與y軸正半軸相交,∴c>0,∵拋物線對稱軸在y軸的右側(cè),∴>0,∴b>0,∴abc<0,故B錯誤,符合題意;又∵圖象與x軸的一個交點坐標(biāo)是(1,0),
∴將點代入二次函數(shù)y=ax2+bx+c得a+b+c=0,故C正確,不符合題意,
∵當(dāng)x=-1時,y=a-b+c,由函數(shù)圖象可知,y=a-b+c<0,故D正確,不符合題意,
故選:B.【點睛】本題考查二次函數(shù)圖象上點的坐標(biāo)特征,是基礎(chǔ)題型,也是??碱}型.9、D【解析】四邊形ABCD的對角線互相平分,則說明四邊形是平行四邊形,由矩形的判定定理知,只需添加條件是對角線相等.【詳解】添加AC=BD,
∵四邊形ABCD的對角線互相平分,
∴四邊形ABCD是平行四邊形,
∵AC=BD,根據(jù)矩形判定定理對角線相等的平行四邊形是矩形,
∴四邊形ABCD是矩形,
故選D.【點睛】考查了矩形的判定,關(guān)鍵是掌握矩形的判定方法:①矩形的定義:有一個角是直角的平行四邊形是矩形;②有三個角是直角的四邊形是矩形;③對角線相等的平行四邊形是矩形.10、B【分析】根據(jù)圓錐的側(cè)面積,代入數(shù)進行計算即可.【詳解】解:圓錐的側(cè)面積2π×1×1=1π.故選:B.【點睛】本題主要考查了圓錐的計算,掌握圓錐的計算是解題的關(guān)鍵.11、A【分析】依據(jù)拋物線的解析式即可判斷頂點坐標(biāo).【詳解】解:∵拋物線,∴拋物線的頂點坐標(biāo)為(2,0).故選A.【點睛】掌握拋物線y=a(x-h)2+k的頂點坐標(biāo)為(h,k)是解題的關(guān)鍵.12、D【分析】根據(jù)根的判別式即可求出答案.【詳解】由題意可知:△=16﹣4a≥0且a≠0,∴a≤4且a≠0,所以a的最大值為4,故選:D.【點睛】本題考查一元二次方程,解題的關(guān)鍵是熟練運用一元二次方程的解法.二、填空題(每題4分,共24分)13、【解析】四種解一元二次方程的解法即:直接開平方法,配方法,公式法,因式分解法.注意識別使用簡單的方法進行求解,此題應(yīng)用因式分解法較為簡捷,因此,.14、140【解析】試題解析::∵∠A=110°
∴∠C=180°-∠A=70°
∴∠BOD=2∠C=140°.15、4∶1【解析】試題解析:∵兩個相似三角形的周長比為2:3,∴這兩個相似三角形的相似比為2:3,∴它們的面積比是4:1.考點:相似三角形的性質(zhì).16、1+【分析】利用二次函數(shù)圖象上點的坐標(biāo)特征可求出點A、B、D的坐標(biāo),進而可得出OD、OA、OB,根據(jù)圓的性質(zhì)可得出OM的長度,在Rt△COM中,利用勾股定理可求出CO的長度,再根據(jù)CD=CO+OD即可求出結(jié)論.【詳解】當(dāng)x=0時,y=(x﹣1)2﹣4=﹣1,∴點D的坐標(biāo)為(0,﹣1),∴OD=1;當(dāng)y=0時,有(x﹣1)2﹣4=0,解得:x1=﹣1,x2=1,∴點A的坐標(biāo)為(﹣1,0),點B的坐標(biāo)為(0,1),∴AB=4,OA=1,OB=1.連接CM,則CM=AB=2,OM=1,如圖所示.在Rt△COM中,CO==,∴CD=CO+OD=1+.故答案為1+.【點睛】先根據(jù)二次函數(shù)與一元二次方程的關(guān)系,勾股定理,熟練掌握二次函數(shù)與一元二次方程的關(guān)系是解答本題的關(guān)鍵.17、【解析】根據(jù)一元二次方程的解的定義,將x=2代入已知方程,列出關(guān)于q的新方程,通過解該方程即可求得q的值.【詳解】∵x=2是方程x2-3x+q=0的一個根,
∴x=2滿足該方程,
∴22-3×2+q=0,
解得,q=2.
故答案為2.【點睛】本題考查了方程的解的定義.一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即用這個數(shù)代替未知數(shù)所得式子仍然成立.18、【詳解】解:∵每個扇形大小相同,因此陰影面積與空白的面積相等,∴落在白色扇形部分的概率為:=.故答案為.考點:幾何概率三、解答題(共78分)19、(1);(2)成立,理由見解析;(3)【分析】(1)如圖1,過點D作BC的垂線,與BC的延長線交于點E,由垂直的性質(zhì)就可以得出△ABC≌△BDE,就有DE=BC=a進而由三角形的面積公式得出結(jié)論;
(2)如圖2,過點D作BC的垂線,與BC的延長線交于點E,由垂直的性質(zhì)就可以得出△ABC≌△BDE,就有.DE=BC=a進而由三角形的面積公式得出結(jié)論;
(3)如圖3,過點A作AF⊥BC與F,過點D作DE⊥BC的延長線于點E,由等腰三角形的性質(zhì)可以得出BF=BC,由條件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面積公式就可以得出結(jié)論.【詳解】解:(1)如圖1,過點D作DE⊥CB交CB的延長線于E,
∴∠BED=∠ACB=90°,
由旋轉(zhuǎn)知,AB=BD,∠ABD=90°,
∴∠ABC+∠DBE=90°,
∵∠A+∠ABC=90°,
∴∠A=∠DBE,
在△ABC和△BDE中,
,
∴△ABC≌△BDE(AAS)
∴BC=DE=a.
∵S△BCD=BC?DE=
故答案為(2)(1)中結(jié)論仍然成立,理由:如圖,過點作邊上的高,在中,∵,由旋轉(zhuǎn)可知:,∴,∴,又∵,∴,∴,(3).如圖3,過點A作AF⊥BC與F,過點D作DE⊥BC的延長線于點E,
∴∠AFB=∠E=90°,BF=BC=a.
∴∠FAB+∠ABF=90°
∵∠ABD=90°,
∴∠ABF+∠DBE=90°,
∴∠FAB=∠EBD
∵線段BD是由線段AB旋轉(zhuǎn)得到的,
∴AB=BD
在△AFB和△BED中,
,
∴△AFB≌△BED(AAS),
∴BF=DE=a.
∵S△BCD=BC?DE=?a?a=.
∴△BCD的面積為.【點睛】此題是幾何變換綜合題,主要考查了直角三角形的性質(zhì)的運用,等腰三角形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,三角形的面積公式的運用,判斷出△ABC≌△BDE是解本題的關(guān)鍵.20、見解析【分析】連結(jié),由,根據(jù)圓周角定理得,而,則,可判斷,由于,所以,然后根據(jù)切線的判定定理得到是的切線;【詳解】解:證明:連結(jié),如圖,,,,,,,,,是的切線;
【點睛】本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.21、(1)CG與⊙O相切,理由見解析;(1)見解析;(3)DE=1【解析】(1)連接CE,由AB是直徑知△ECF是直角三角形,結(jié)合G為EF中點知∠AEO=∠GEC=∠GCE,再由OA=OC知∠OCA=∠OAC,根據(jù)OF⊥AB可得∠OCA+∠GCE=90°,即OC⊥GC,據(jù)此即可得證;(1)證△ABC∽△FBO得,結(jié)合AB=1BO即可得;(3)證ECD∽△EGC得,根據(jù)CE=3,DG=1.5知,解之可得.【詳解】解:(1)CG與⊙O相切,理由如下:如圖1,連接CE,∵AB是⊙O的直徑,∴∠ACB=∠ACF=90°,∵點G是EF的中點,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∴CG與⊙O相切;(1)∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴,即BO?AB=BC?BF,∵AB=1BO,∴1OB1=BC?BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=1∠F,又∵∠DCE=1∠F,∴∠EGC=∠DCE,∵∠DEC=∠CEG,∴△ECD∽△EGC,∴,∵CE=3,DG=1.5,∴,整理,得:DE1+1.5DE﹣9=0,解得:DE=1或DE=﹣4.5(舍),故DE=1.【點睛】本題是圓的綜合問題,解題的關(guān)鍵是掌握圓周角定理、切線的判定、相似三角形的判定與性質(zhì)及直角三角形的性質(zhì)等知識點.22、(1)補全圖形見解析;(2)90;直徑所對的圓周角是直角.【分析】(1)根據(jù)題中得方法依次作圖即可;(2)直徑所對的圓周角是直角,據(jù)此填寫即可.【詳解】(1)補全圖形如圖(2)∵直徑所對的圓周角是直角,∴∠OAP=∠OBP=90°,故答案為:90;直徑所對的圓周角是直角,【點睛】本題主要考查了尺規(guī)作圖以及圓周角性質(zhì),熟練掌握相關(guān)方法是解題關(guān)鍵.23、(1)100、35;(2)見解析;(3)【分析】(1)由共享單車人數(shù)及其百分比求得總?cè)藬?shù)m,用支付寶人數(shù)除以總?cè)藬?shù)可得其百分比n的值;
(2)總?cè)藬?shù)乘以網(wǎng)購人數(shù)的百分比可得其人數(shù),用微信人數(shù)除以總?cè)藬?shù)求得其百分比即可補全兩個圖形;
(3)根據(jù)題意畫出樹狀圖得出所有等可能結(jié)果,從中找到這兩位同學(xué)最認(rèn)可的新生事物不一樣的結(jié)果數(shù),再根據(jù)概率公式計算可得.【詳解】解:(1)∵被調(diào)查的總?cè)藬?shù)m=10÷10%=100人,
∴支付寶的人數(shù)所占百分比n%=×100%=35%,即n=35,故答案為:100,35;(2)網(wǎng)購人數(shù)為100×15%=15人,微信對應(yīng)的百分比為×100%=40%,補全圖形如下:(3)根據(jù)題意畫樹狀圖如下:共有12種情況,這兩位同學(xué)最認(rèn)可的新生事物不一樣的有10種,所以這兩位同學(xué)最認(rèn)可的新生事物不一樣的概率為=.【點睛】本題考查的是用列表法或畫樹狀圖法求概率以及扇形統(tǒng)計圖與條形統(tǒng)計圖的知識.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.24、(1)答案見解析;(2).【分析】(1)共有12種等可能的情況,根據(jù)題意畫出樹狀圖即可;(2)根據(jù)樹狀圖列出所有可能的值,即可求出的值是整數(shù)的概率.【詳解】(1)用樹狀圖法表示小明所取出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 跨國企業(yè)辦公租賃合同
- 2024年度海南省公共營養(yǎng)師之三級營養(yǎng)師押題練習(xí)試題B卷含答案
- 科研項目合作的有效配合措施
- 危險廢物貯存間的標(biāo)識與警示措施
- 商業(yè)空間塑膠地板施工流程
- 應(yīng)急管理與突發(fā)事宜處理制度
- 軟件開發(fā)中的關(guān)鍵問題及應(yīng)對措施
- 社區(qū)慢性病管理與健康教育流程
- 教育機構(gòu)信用評價預(yù)控措施
- 小學(xué)2025年教師職業(yè)發(fā)展培訓(xùn)計劃
- 春節(jié)文化常識單選題100道及答案
- 12123交管學(xué)法減分考試題及答案
- 2024年杭州師范大學(xué)附屬醫(yī)院招聘高層次緊缺專業(yè)人才筆試真題
- 制造業(yè)BCM業(yè)務(wù)連續(xù)性管理培訓(xùn)
- 商場停車場管理制度
- 2025年寒假實踐特色作業(yè)設(shè)計模板
- 24年追覓在線測評28題及答案
- TGDNAS 043-2024 成人靜脈中等長度導(dǎo)管置管技術(shù)
- 《陸上風(fēng)電場工程概算定額》NBT 31010-2019
- 藥房(冰柜)溫濕度表
- QJ903.9A-1995航天產(chǎn)品工藝文件管理制度管理用工藝文件編制規(guī)則
評論
0/150
提交評論