版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若關(guān)于的方程恰好有3個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.2.已知方程表示的曲線為的圖象,對于函數(shù)有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)至少存在一個(gè)零點(diǎn);③的最大值為;④若函數(shù)和圖象關(guān)于原點(diǎn)對稱,則由方程所確定;則正確命題序號(hào)為()A.①③ B.②③ C.①④ D.②④3.若表示不超過的最大整數(shù)(如,,),已知,,,則()A.2 B.5 C.7 D.84.若集合,,則A. B. C. D.5.已知平面平面,且是正方形,在正方形內(nèi)部有一點(diǎn),滿足與平面所成的角相等,則點(diǎn)的軌跡長度為()A. B.16 C. D.6.已知某幾何體的三視圖如圖所示,其中正視圖與側(cè)視圖是全等的直角三角形,則該幾何體的各個(gè)面中,最大面的面積為()A.2 B.5 C. D.7.拋物線C:y2=2px的焦點(diǎn)F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.8.已知,且,則()A. B. C. D.9.已知點(diǎn)在雙曲線上,則該雙曲線的離心率為()A. B. C. D.10.已知,,,則的最小值為()A. B. C. D.11.已知等邊△ABC內(nèi)接于圓:x2+y2=1,且P是圓τ上一點(diǎn),則的最大值是()A. B.1 C. D.212.集合的真子集的個(gè)數(shù)是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線C:(,)的頂點(diǎn)到漸近線的距離為,則的最小值________.14.若函數(shù)的圖像上存在點(diǎn),滿足約束條件,則實(shí)數(shù)的最大值為__________.15.已知,在方向上的投影為,則與的夾角為_________.16.三棱柱中,,側(cè)棱底面,且三棱柱的側(cè)面積為.若該三棱柱的頂點(diǎn)都在同一個(gè)球的表面上,則球的表面積的最小值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知滿足,且,求的值及的面積.(從①,②,③這三個(gè)條件中選一個(gè),補(bǔ)充到上面問題中,并完成解答.)18.(12分)已知函數(shù).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當(dāng)時(shí),求函數(shù)在上最小值.19.(12分)己知等差數(shù)列的公差,,且,,成等比數(shù)列.(1)求使不等式成立的最大自然數(shù)n;(2)記數(shù)列的前n項(xiàng)和為,求證:.20.(12分)在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)),直線經(jīng)過點(diǎn)且傾斜角為.(1)求曲線的極坐標(biāo)方程和直線的參數(shù)方程;(2)已知直線與曲線交于,滿足為的中點(diǎn),求.21.(12分)設(shè)函數(shù),,其中,為正實(shí)數(shù).(1)若的圖象總在函數(shù)的圖象的下方,求實(shí)數(shù)的取值范圍;(2)設(shè),證明:對任意,都有.22.(10分)已知分別是橢圓的左焦點(diǎn)和右焦點(diǎn),橢圓的離心率為是橢圓上兩點(diǎn),點(diǎn)滿足.(1)求的方程;(2)若點(diǎn)在圓上,點(diǎn)為坐標(biāo)原點(diǎn),求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
討論,,三種情況,求導(dǎo)得到單調(diào)區(qū)間,畫出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當(dāng)時(shí),,故,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且;當(dāng)時(shí),;當(dāng)時(shí),,,函數(shù)單調(diào)遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的零點(diǎn)問題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.2、C【解析】
分四類情況進(jìn)行討論,然后畫出相對應(yīng)的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當(dāng)時(shí),,此時(shí)不存在圖象;(2)當(dāng)時(shí),,此時(shí)為實(shí)軸為軸的雙曲線一部分;(3)當(dāng)時(shí),,此時(shí)為實(shí)軸為軸的雙曲線一部分;(4)當(dāng)時(shí),,此時(shí)為圓心在原點(diǎn),半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調(diào)遞減,所以①正確;對于②,函數(shù)與的圖象沒有交點(diǎn),即沒有零點(diǎn),所以②錯(cuò)誤;對于③,由函數(shù)圖象的對稱性可知③錯(cuò)誤;對于④,函數(shù)和圖象關(guān)于原點(diǎn)對稱,則中用代替,用代替,可得,所以④正確.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡單幾何性質(zhì),函數(shù)的圖象與性質(zhì),函數(shù)的零點(diǎn)概念,考查了數(shù)形結(jié)合的數(shù)學(xué)思想.3、B【解析】
求出,,,,,,判斷出是一個(gè)以周期為6的周期數(shù)列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個(gè)以周期為6的周期數(shù)列,則.故選:B.【點(diǎn)睛】本題考查周期數(shù)列的判斷和取整函數(shù)的應(yīng)用.4、C【解析】
解一元次二次不等式得或,利用集合的交集運(yùn)算求得.【詳解】因?yàn)榛?,,所以,故選C.【點(diǎn)睛】本題考查集合的交運(yùn)算,屬于容易題.5、C【解析】
根據(jù)與平面所成的角相等,判斷出,建立平面直角坐標(biāo)系,求得點(diǎn)的軌跡方程,由此求得點(diǎn)的軌跡長度.【詳解】由于平面平面,且交線為,,所以平面,平面.所以和分別是直線與平面所成的角,所以,所以,即,所以.以為原點(diǎn)建立平面直角坐標(biāo)系如下圖所示,則,,設(shè)(點(diǎn)在第一象限內(nèi)),由得,即,化簡得,由于點(diǎn)在第一象限內(nèi),所以點(diǎn)的軌跡是以為圓心,半徑為的圓在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以點(diǎn)的軌跡長度為.故選:C【點(diǎn)睛】本小題主要考查線面角的概念和運(yùn)用,考查動(dòng)點(diǎn)軌跡方程的求法,考查空間想象能力和邏輯推理能力,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.6、D【解析】
根據(jù)三視圖還原出幾何體,找到最大面,再求面積.【詳解】由三視圖可知,該幾何體是一個(gè)三棱錐,如圖所示,將其放在一個(gè)長方體中,并記為三棱錐.,,,故最大面的面積為.選D.【點(diǎn)睛】本題主要考查三視圖的識(shí)別,復(fù)雜的三視圖還原為幾何體時(shí),一般借助長方體來實(shí)現(xiàn).7、A【解析】
先由題和拋物線的性質(zhì)求得點(diǎn)P的坐標(biāo)和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點(diǎn)F1,0,準(zhǔn)線與x軸交點(diǎn)F'(-1,0),雙曲線半焦距c=1,設(shè)點(diǎn)Q(-1,y)ΔFPQ是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形,即PF所以PQ⊥拋物線的準(zhǔn)線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A【點(diǎn)睛】本題考查了圓錐曲線綜合,分析題目,畫出圖像,熟悉拋物線性質(zhì)以及雙曲線的定義是解題的關(guān)鍵,屬于中檔題.8、B【解析】分析:首先利用同角三角函數(shù)關(guān)系式,結(jié)合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關(guān)于的式子,代入從而求得結(jié)果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點(diǎn)睛:該題考查的是有關(guān)同角三角函數(shù)關(guān)系式以及倍角公式的應(yīng)用,在解題的過程中,需要對已知真切求余弦的方法要明確,可以應(yīng)用同角三角函數(shù)關(guān)系式求解,也可以結(jié)合三角函數(shù)的定義式求解.9、C【解析】
將點(diǎn)A坐標(biāo)代入雙曲線方程即可求出雙曲線的實(shí)軸長和虛軸長,進(jìn)而求得離心率.【詳解】將,代入方程得,而雙曲線的半實(shí)軸,所以,得離心率,故選C.【點(diǎn)睛】此題考查雙曲線的標(biāo)準(zhǔn)方程和離心率的概念,屬于基礎(chǔ)題.10、B【解析】,選B11、D【解析】
如圖所示建立直角坐標(biāo)系,設(shè),則,計(jì)算得到答案.【詳解】如圖所示建立直角坐標(biāo)系,則,,,設(shè),則.當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了向量的計(jì)算,建立直角坐標(biāo)系利用坐標(biāo)計(jì)算是解題的關(guān)鍵.12、C【解析】
根據(jù)含有個(gè)元素的集合,有個(gè)子集,有個(gè)真子集,計(jì)算可得;【詳解】解:集合含有個(gè)元素,則集合的真子集有(個(gè)),故選:C【點(diǎn)睛】考查列舉法的定義,集合元素的概念,以及真子集的概念,對于含有個(gè)元素的集合,有個(gè)子集,有個(gè)真子集,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)雙曲線的方程求出其中一條漸近線,頂點(diǎn),再利用點(diǎn)到直線的距離公式可得,由,利用基本不等式即可求解.【詳解】由雙曲線C:(,,可得一條漸近線,一個(gè)頂點(diǎn),所以,解得,則,當(dāng)且僅當(dāng)時(shí),取等號(hào),所以的最小值為.故答案為:【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì)、點(diǎn)到直線的距離公式、基本不等式求最值,注意驗(yàn)證等號(hào)成立的條件,屬于基礎(chǔ)題.14、1【解析】由題知x>0,且滿足約束條件的圖象為由圖可知當(dāng)與交于點(diǎn)B(2,1),當(dāng)直線過B點(diǎn)時(shí),m取得最大值為1.點(diǎn)睛:線性規(guī)劃的實(shí)質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一、準(zhǔn)確無誤地作出可行域;二、畫標(biāo)準(zhǔn)函數(shù)所對應(yīng)的直線時(shí),要注意與約束條件中的直線的斜率進(jìn)行比較,避免出錯(cuò);三、一般情況下,目標(biāo)函數(shù)的最大或最小會(huì)在可行域的端點(diǎn)或邊界上取得.15、【解析】
由向量投影的定義可求得兩向量夾角的余弦值,從而得角的大?。驹斀狻吭诜较蛏系耐队盀?,即夾角為.故答案為:.【點(diǎn)睛】本題考查求向量的夾角,掌握向量投影的定義是解題關(guān)鍵.16、【解析】
分析題意可知,三棱柱為正三棱柱,所以三棱柱的中心即為外接球的球心,設(shè)棱柱的底面邊長為,高為,則三棱柱的側(cè)面積為,球的半徑表示為,再由重要不等式即可得球表面積的最小值【詳解】如下圖,∵三棱柱為正三棱柱∴設(shè),∴三棱柱的側(cè)面積為∴又外接球半徑∴外接球表面積.故答案為:【點(diǎn)睛】考查學(xué)生對幾何體的正確認(rèn)識(shí),能通過題意了解到題目傳達(dá)的意思,培養(yǎng)學(xué)生空間想象力,能夠利用題目條件,畫出圖形,尋找外接球的球心以及半徑,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、見解析【解析】
選擇①時(shí):,,計(jì)算,根據(jù)正弦定理得到,計(jì)算面積得到答案;選擇②時(shí),,,故,為鈍角,故無解;選擇③時(shí),,根據(jù)正弦定理解得,,根據(jù)正弦定理得到,計(jì)算面積得到答案.【詳解】選擇①時(shí):,,故.根據(jù)正弦定理:,故,故.選擇②時(shí),,,故,為鈍角,故無解.選擇③時(shí),,根據(jù)正弦定理:,故,解得,.根據(jù)正弦定理:,故,故.【點(diǎn)睛】本題考查了三角恒等變換,正弦定理,面積公式,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.18、(Ⅰ)見解析;(Ⅱ)當(dāng)時(shí),函數(shù)的最小值是;當(dāng)時(shí),函數(shù)的最小值是【解析】
(1)求出導(dǎo)函數(shù),并且解出它的零點(diǎn)x=,再分區(qū)間討論導(dǎo)數(shù)的正負(fù),即可得到函數(shù)f(x)的單調(diào)區(qū)間;
(2)分三種情況加以討論,結(jié)合函數(shù)的單調(diào)性與函數(shù)值的大小比較,即可得到當(dāng)0<a<ln2時(shí),函數(shù)f(x)的最小值是-a;當(dāng)a≥ln2時(shí),函數(shù)f(x)的最小值是ln2-2a.【詳解】函數(shù)的定義域
為.
因?yàn)?,令,可得?/p>
當(dāng)時(shí),;當(dāng)時(shí),,綜上所述:可知函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為當(dāng),即時(shí),函數(shù)在區(qū)間上是減函數(shù),
的最小值是當(dāng),即時(shí),函數(shù)在區(qū)間上是增函數(shù),的最小值是當(dāng),即時(shí),函數(shù)在上是增函數(shù),在上是減函數(shù).
又,
當(dāng)時(shí),的最小值是;
當(dāng)時(shí),的最小值為綜上所述,結(jié)論為當(dāng)時(shí),函數(shù)的最小值是;
當(dāng)時(shí),函數(shù)的最小值是.【點(diǎn)睛】求函數(shù)極值與最值的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)解方程求出函數(shù)定義域內(nèi)的所有根;(4)列表檢查在的根左右兩側(cè)值的符號(hào),如果左正右負(fù)(左增右減),那么在處取極大值,如果左負(fù)右正(左減右增),那么在處取極小值.(5)如果只有一個(gè)極值點(diǎn),則在該處即是極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點(diǎn)值的函數(shù)值與極值的大小19、(1);(2)證明見解析【解析】
(1)根據(jù),,成等比數(shù)列,有,結(jié)合公差,,求得通項(xiàng),再解不等式.(2)根據(jù)(1),用裂項(xiàng)相消法求和,然后研究其單調(diào)性即可.【詳解】(1)由題意,可知,即,∴.又,,∴,∴.∴,∴,故滿足題意的最大自然數(shù)為.(2),∴...從而當(dāng)時(shí),單調(diào)遞增,且,當(dāng)時(shí),單調(diào)遞增,且,所以,由,知不等式成立.【點(diǎn)睛】本題主要考查等差數(shù)列的基本運(yùn)算和裂項(xiàng)相消法求和,還考查了運(yùn)算求解的能力,屬于中檔題.20、(1),;(2).【解析】
(1)由曲線的參數(shù)方程消去參數(shù)可得曲線的普通方程,由此可求曲線的極坐標(biāo)方程;直接利用直線的傾斜角以及經(jīng)過的點(diǎn)求出直線的參數(shù)方程即可;(2)將直線的參數(shù)方程,代入曲線的普通方程,整理得,利用韋達(dá)定理,根據(jù)為的中點(diǎn),解出即可.【詳解】(1)由(為參數(shù))消去參數(shù),可得,即,已知曲線的普通方程為,,,,即,曲線的極坐標(biāo)方程為,直線經(jīng)過點(diǎn),且傾斜角為,直線的參數(shù)方程:(為參數(shù),).(2)設(shè)對應(yīng)的參數(shù)分別為,.將直線的參數(shù)方程代入并整理,得,,.又為的中點(diǎn),,,,,即,,,,即,.【點(diǎn)睛】本題考查了圓的參數(shù)方程與極坐標(biāo)方程之間的互化以及直線參數(shù)方程的應(yīng)用,考查了計(jì)算能力,屬于中檔題.21、(1)(2)證明見解析【解析】
(1)據(jù)題意可得在區(qū)間上恒成立,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,從而求出滿足不等式的的取值范圍;(2)不等式整理為,由(1)可知當(dāng)時(shí),,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性從而證明在區(qū)間上成立,從而證明對任意,都有.【詳解】(1)解:因?yàn)楹瘮?shù)的圖象恒在的圖象的下方,所以在區(qū)間上恒成立.設(shè),其中,所以,其中,.①當(dāng),即時(shí),,所以函數(shù)在上單調(diào)遞增,,故成立,滿足題意.②當(dāng),即時(shí),設(shè),則圖象的對稱軸,,,所以在上存在唯一實(shí)根,設(shè)為,則,,,所以在上單調(diào)遞減,此時(shí),不合題意.綜上可得,實(shí)數(shù)的取值范圍是.(2)證明:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年己二酸二甲酯項(xiàng)目建議書
- 全程融資合同范本
- 商鋪轉(zhuǎn)租賃合同
- 超市柜臺(tái)租賃協(xié)議
- 佳木斯市個(gè)人車位租賃合同
- 2025年海洋潛標(biāo)系統(tǒng)項(xiàng)目合作計(jì)劃書
- 2025年碳纖維正交三向織物項(xiàng)目合作計(jì)劃書
- 2025年X射線管項(xiàng)目發(fā)展計(jì)劃
- 2025個(gè)人承包土地合同書
- 2024年零星建筑工程施工合作合同范本版B版
- 商務(wù)英語口語與實(shí)訓(xùn)學(xué)習(xí)通課后章節(jié)答案期末考試題庫2023年
- DB3302-T 1015-2022 城市道路清掃保潔作業(yè)規(guī)范
- 手術(shù)室提高患者術(shù)中保溫措施的執(zhí)行率PDCA課件
- 報(bào)刊雜志發(fā)放登記表
- 大學(xué)物理(下)(太原理工大學(xué))知到章節(jié)答案智慧樹2023年
- 布袋除塵器項(xiàng)目可行性分析報(bào)告
- 2023年安徽省公務(wù)員錄用考試《行測》真題及答案解析
- 我和我的祖國-電影賞析
- 基本事實(shí)要素表
- 市場監(jiān)督管理局企業(yè)注冊、經(jīng)營范圍登記規(guī)范表述:行業(yè)分類及條目代碼
- 2023-2024學(xué)年青海省西寧市小學(xué)數(shù)學(xué)二年級(jí)上冊期末自測試題
評論
0/150
提交評論