版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023學(xué)年高考數(shù)學(xué)模擬測試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖示,三棱錐的底面是等腰直角三角形,,且,,則與面所成角的正弦值等于()A. B. C. D.2.計算等于()A. B. C. D.3.函數(shù)在內(nèi)有且只有一個零點(diǎn),則a的值為()A.3 B.-3 C.2 D.-24.已知奇函數(shù)是上的減函數(shù),若滿足不等式組,則的最小值為()A.-4 B.-2 C.0 D.45.設(shè)全集為R,集合,,則A. B. C. D.6.公比為2的等比數(shù)列中存在兩項,,滿足,則的最小值為()A. B. C. D.7.復(fù)數(shù)()A. B. C.0 D.8.一個封閉的棱長為2的正方體容器,當(dāng)水平放置時,如圖,水面的高度正好為棱長的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),則容器里水面的最大高度為()A. B. C. D.9.從拋物線上一點(diǎn)(點(diǎn)在軸上方)引拋物線準(zhǔn)線的垂線,垂足為,且,設(shè)拋物線的焦點(diǎn)為,則直線的斜率為()A. B. C. D.10.如圖,拋物線:的焦點(diǎn)為,過點(diǎn)的直線與拋物線交于,兩點(diǎn),若直線與以為圓心,線段(為坐標(biāo)原點(diǎn))長為半徑的圓交于,兩點(diǎn),則關(guān)于值的說法正確的是()A.等于4 B.大于4 C.小于4 D.不確定11.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.12.若雙曲線的一條漸近線與圓至多有一個交點(diǎn),則雙曲線的離心率的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線C:(,)的頂點(diǎn)到漸近線的距離為,則的最小值________.14.已知橢圓:的左、右焦點(diǎn)分別為,,如圖是過且垂直于長軸的弦,則的內(nèi)切圓方程是________.15.集合,,則_____.16.已知橢圓的左右焦點(diǎn)分別為,過且斜率為的直線交橢圓于,若三角形的面積等于,則該橢圓的離心率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),,使得對任意兩個不等的正實(shí)數(shù),都有恒成立.(1)求的解析式;(2)若方程有兩個實(shí)根,且,求證:.18.(12分)已知在四棱錐中,平面,,在四邊形中,,,,為的中點(diǎn),連接,為的中點(diǎn),連接.(1)求證:.(2)求二面角的余弦值.19.(12分)已知橢圓的焦點(diǎn)在軸上,且順次連接四個頂點(diǎn)恰好構(gòu)成了一個邊長為且面積為的菱形.(1)求橢圓的方程;(2)設(shè),過橢圓右焦點(diǎn)的直線交于、兩點(diǎn),若對滿足條件的任意直線,不等式恒成立,求的最小值.20.(12分)設(shè)直線與拋物線交于兩點(diǎn),與橢圓交于兩點(diǎn),設(shè)直線(為坐標(biāo)原點(diǎn))的斜率分別為,若.(1)證明:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(2)是否存在常數(shù),滿足?并說明理由.21.(12分)在四棱柱中,底面為正方形,,平面.(1)證明:平面;(2)若,求二面角的余弦值.22.(10分)已知函數(shù).(Ⅰ)求函數(shù)的極值;(Ⅱ)若,且,求證:.
2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【答案解析】
首先找出與面所成角,根據(jù)所成角所在三角形利用余弦定理求出所成角的余弦值,再根據(jù)同角三角函數(shù)關(guān)系求出所成角的正弦值.【題目詳解】由題知是等腰直角三角形且,是等邊三角形,設(shè)中點(diǎn)為,連接,,可知,,同時易知,,所以面,故即為與面所成角,有,故.故選:A.【答案點(diǎn)睛】本題主要考查了空間幾何題中線面夾角的計算,屬于基礎(chǔ)題.2、A【答案解析】
利用誘導(dǎo)公式、特殊角的三角函數(shù)值,結(jié)合對數(shù)運(yùn)算,求得所求表達(dá)式的值.【題目詳解】原式.故選:A【答案點(diǎn)睛】本小題主要考查誘導(dǎo)公式,考查對數(shù)運(yùn)算,屬于基礎(chǔ)題.3、A【答案解析】
求出,對分類討論,求出單調(diào)區(qū)間和極值點(diǎn),結(jié)合三次函數(shù)的圖像特征,即可求解.【題目詳解】,若,,在單調(diào)遞增,且,在不存在零點(diǎn);若,,在內(nèi)有且只有一個零點(diǎn),.故選:A.【答案點(diǎn)睛】本題考查函數(shù)的零點(diǎn)、導(dǎo)數(shù)的應(yīng)用,考查分類討論思想,熟練掌握函數(shù)圖像和性質(zhì)是解題的關(guān)鍵,屬于中檔題.4、B【答案解析】
根據(jù)函數(shù)的奇偶性和單調(diào)性得到可行域,畫出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【題目詳解】奇函數(shù)是上的減函數(shù),則,且,畫出可行域和目標(biāo)函數(shù),,即,表示直線與軸截距的相反數(shù),根據(jù)平移得到:當(dāng)直線過點(diǎn),即時,有最小值為.故選:.【答案點(diǎn)睛】本題考查了函數(shù)的單調(diào)性和奇偶性,線性規(guī)劃問題,意在考查學(xué)生的綜合應(yīng)用能力,畫出圖像是解題的關(guān)鍵.5、B【答案解析】分析:由題意首先求得,然后進(jìn)行交集運(yùn)算即可求得最終結(jié)果.詳解:由題意可得:,結(jié)合交集的定義可得:.本題選擇B選項.點(diǎn)睛:本題主要考查交集的運(yùn)算法則,補(bǔ)集的運(yùn)算法則等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.6、D【答案解析】
根據(jù)已知條件和等比數(shù)列的通項公式,求出關(guān)系,即可求解.【題目詳解】,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,最小值為.故選:D.【答案點(diǎn)睛】本題考查等比數(shù)列通項公式,注意為正整數(shù),如用基本不等式要注意能否取到等號,屬于基礎(chǔ)題.7、C【答案解析】略8、B【答案解析】
根據(jù)已知可知水面的最大高度為正方體面對角線長的一半,由此得到結(jié)論.【題目詳解】正方體的面對角線長為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),所以容器里水面的最大高度為面對角線長的一半,即最大水面高度為,故選B.【答案點(diǎn)睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎(chǔ)題.9、A【答案解析】
根據(jù)拋物線的性質(zhì)求出點(diǎn)坐標(biāo)和焦點(diǎn)坐標(biāo),進(jìn)而求出點(diǎn)的坐標(biāo),代入斜率公式即可求解.【題目詳解】設(shè)點(diǎn)的坐標(biāo)為,由題意知,焦點(diǎn),準(zhǔn)線方程,所以,解得,把點(diǎn)代入拋物線方程可得,,因?yàn)椋?,所以點(diǎn)坐標(biāo)為,代入斜率公式可得,.故選:A【答案點(diǎn)睛】本題考查拋物線的性質(zhì),考查運(yùn)算求解能力;屬于基礎(chǔ)題.10、A【答案解析】
利用的坐標(biāo)為,設(shè)直線的方程為,然后聯(lián)立方程得,最后利用韋達(dá)定理求解即可【題目詳解】據(jù)題意,得點(diǎn)的坐標(biāo)為.設(shè)直線的方程為,點(diǎn),的坐標(biāo)分別為,.討論:當(dāng)時,;當(dāng)時,據(jù),得,所以,所以.【答案點(diǎn)睛】本題考查直線與拋物線的相交問題,解題核心在于聯(lián)立直線與拋物線的方程,屬于基礎(chǔ)題11、D【答案解析】
集合.為自然數(shù)集,由此能求出結(jié)果.【題目詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯誤.故選:D.【答案點(diǎn)睛】本題考查命題真假的判斷、元素與集合的關(guān)系、集合與集合的關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.12、C【答案解析】
求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點(diǎn)到直線的距離公式可得的范圍,再由離心率公式計算即可得到所求范圍.【題目詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【答案點(diǎn)睛】本題考查雙曲線的離心率的范圍,注意運(yùn)用圓心到漸近線的距離不小于半徑,考查化簡整理的運(yùn)算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】
根據(jù)雙曲線的方程求出其中一條漸近線,頂點(diǎn),再利用點(diǎn)到直線的距離公式可得,由,利用基本不等式即可求解.【題目詳解】由雙曲線C:(,,可得一條漸近線,一個頂點(diǎn),所以,解得,則,當(dāng)且僅當(dāng)時,取等號,所以的最小值為.故答案為:【答案點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì)、點(diǎn)到直線的距離公式、基本不等式求最值,注意驗(yàn)證等號成立的條件,屬于基礎(chǔ)題.14、【答案解析】
利用公式計算出,其中為的周長,為內(nèi)切圓半徑,再利用圓心到直線AB的距離等于半徑可得到圓心坐標(biāo).【題目詳解】由已知,,,,設(shè)內(nèi)切圓的圓心為,半徑為,則,故有,解得,由,或(舍),所以的內(nèi)切圓方程為.故答案為:.【答案點(diǎn)睛】本題考查橢圓中三角形內(nèi)切圓的方程問題,涉及到橢圓焦點(diǎn)三角形、橢圓的定義等知識,考查學(xué)生的運(yùn)算能力,是一道中檔題.15、【答案解析】
分析出集合A為奇數(shù)構(gòu)成的集合,即可求得交集.【題目詳解】因?yàn)楸硎緸槠鏀?shù),故.故答案為:【答案點(diǎn)睛】此題考查求集合的交集,根據(jù)已知集合求解,屬于簡單題.16、【答案解析】
由題得直線的方程為,代入橢圓方程得:,設(shè)點(diǎn),則有,由,且解出,進(jìn)而求解出離心率.【題目詳解】由題知,直線的方程為,代入消得:,設(shè)點(diǎn),則有,,而,又,解得:,所以離心率.故答案為:【答案點(diǎn)睛】本題主要考查了直線與橢圓的位置關(guān)系,三角形面積計算與離心率的求解,考查了學(xué)生的運(yùn)算求解能力三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【答案解析】
(1)根據(jù)題意,在上單調(diào)遞減,求導(dǎo)得,分類討論的單調(diào)性,結(jié)合題意,得出的解析式;(2)由為方程的兩個實(shí)根,得出,,兩式相減,分別算出和,利用換元法令和構(gòu)造函數(shù),根據(jù)導(dǎo)數(shù)研究單調(diào)性,求出,即可證出結(jié)論.【題目詳解】(1)根據(jù)題意,對任意兩個不等的正實(shí)數(shù),都有恒成立.則在上單調(diào)遞減,因?yàn)?,?dāng)時,在內(nèi)單調(diào)遞減.,當(dāng)時,由,有,此時,當(dāng)時,單調(diào)遞減,當(dāng)時,單調(diào)遞增,綜上,,所以.(2)由為方程的兩個實(shí)根,得,兩式相減,可得,因此,令,由,得,則,構(gòu)造函數(shù).則,所以函數(shù)在上單調(diào)遞增,故,即,可知,故,命題得證.【答案點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性求函數(shù)的解析式、以及利用構(gòu)造函數(shù)法證明不等式,考查轉(zhuǎn)化思想、解題分析能力和計算能力.18、(1)見解析;(2)【答案解析】
(1)連接,證明,得到面,得到證明.(2)以,,所在直線分別為,,軸建立空間直角坐標(biāo)系,為平面的法向量,平面的一個法向量為,計算夾角得到答案.【題目詳解】(1)連接,在四邊形中,,平面,面,,,面,又面,,又在直角三角形中,,為的中點(diǎn),,,面,面,.(2)以,,所在直線分別為,,軸建立空間直角坐標(biāo)系,,,,,,,設(shè)為平面的法向量,,,,,令,則,,,同理可得平面的一個法向量為.設(shè)向量與的所成的角為,,由圖形知,二面角為銳二面角,所以余弦值為.【答案點(diǎn)睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計算能力和空間想象能力.19、(1)(2)【答案解析】
(1)由已知條件列出關(guān)于和的方程,并計算出和的值,jike得到橢圓的方程.(2)設(shè)出點(diǎn)和點(diǎn)坐標(biāo),運(yùn)用點(diǎn)坐標(biāo)計算出,分類討論直線的斜率存在和不存在兩種情況,求解出的最小值.【題目詳解】(1)由己知得:,解得,所以,橢圓的方程(2)設(shè),.當(dāng)直線垂直于軸時,,且此時,,當(dāng)直線不垂直于軸時,設(shè)直線由,得.,.要使恒成立,只需,即最小值為【答案點(diǎn)睛】本題考查了求解橢圓方程以及直線與橢圓的位置關(guān)系,求解過程中需要分類討論直線的斜率存在和不存在兩種情況,并運(yùn)用根與系數(shù)的關(guān)系轉(zhuǎn)化為只含一個變量的表達(dá)式進(jìn)行求解,需要掌握解題方法,并且有一定的計算量.20、(1)證明見解析(0,2);(2)存在,理由見解析【答案解析】
(1)設(shè)直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過定點(diǎn)(2)由斜率公式分別求出,,聯(lián)立直線與拋物線,橢圓,再由根與系數(shù)的關(guān)系得,,,代入,,化簡即可求解.【題目詳解】(1)證明:由題知,直線l的斜率存在且不過原點(diǎn),故設(shè)由可得,.,,故所以直線l的方程為故直線l恒過定點(diǎn).(2)由(1)知設(shè)由可得,,即存在常數(shù)滿足題意.【答案點(diǎn)睛】本題主要考查了直線與拋物線、橢圓的位置關(guān)系,直線過定點(diǎn)問題,考查學(xué)生分析解決問題的能力,屬于中檔題.21、(1)詳見解析;(2).【答案解析】
(1)連接,設(shè),可證得四邊形為平行四邊形,由此得到,根據(jù)線面平行判定定理可證得結(jié)論;(2)以為原點(diǎn)建立空間直角坐標(biāo)系,利用二面角的空間向量求法可求得結(jié)果.【題目詳解】(1)連接,設(shè),連接,在四棱柱中,分別為的中點(diǎn),,四邊形為平行四邊形,,平面,平面,平面.(2)以為原點(diǎn),所在直線分別為軸建立空間直角坐標(biāo)系.設(shè),四邊形為正方形,,,則,,,,,,,設(shè)為平面的法向量,為平面的法向量,由得:,令,則,,由得:,令,則,,,,,二面角為銳二面角,二面角的余弦值為.【答案點(diǎn)睛】本題考查立體幾何中線面平行關(guān)系的證明、空間向量法求解二面角的問題;關(guān)鍵是能夠熟練掌握二面角的向量求法,易錯點(diǎn)是求得法向量夾角余弦值后,未根據(jù)圖形判斷二面角為銳二面角還是鈍二面角,造成余弦值符號出現(xiàn)錯誤.22、(Ⅰ)極大值為:,無極小值;(Ⅱ)見解析.【答案解析】
(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年電力公司黨支部書記個人述職報告范文
- 2025年度教育機(jī)構(gòu)財務(wù)預(yù)算報告范文
- 環(huán)保項目夏季施工防暑降溫方案
- 物流管理崗位的KPI考核與責(zé)任劃分
- 2025農(nóng)村房屋買賣合同格式范本
- 2025農(nóng)村林地買賣合同范本
- 2025甜玉米購銷合同范本
- 2025農(nóng)民勞動合同范本
- 建筑工程施工合同范本
- 輿情應(yīng)對策略與政策建議-洞察分析
- 2024年桂林中考物理試卷
- DL∕T 5362-2018 水工瀝青混凝土試驗(yàn)規(guī)程
- (正式版)JC∕T 60023-2024 石膏條板應(yīng)用技術(shù)規(guī)程
- DL-T5054-2016火力發(fā)電廠汽水管道設(shè)計規(guī)范
- (權(quán)變)領(lǐng)導(dǎo)行為理論
- 2024屆上海市浦東新區(qū)高三二模英語卷
- 家用電器可靠性與壽命預(yù)測研究
- 中考語文二輪復(fù)習(xí):詩歌鑒賞系列之邊塞軍旅詩(知識點(diǎn)+方法+習(xí)題)
- 2024年智慧工地相關(guān)知識考試試題及答案
- 五年級上冊脫式計算練習(xí)300題及答案
- 健康產(chǎn)業(yè)園策劃方案
評論
0/150
提交評論