



版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023學(xué)年高考數(shù)學(xué)模擬測試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位2.已知角的頂點為坐標原點,始邊與軸的非負半軸重合,終邊上有一點,則().A. B. C. D.3.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,若點在角的終邊上,則()A. B. C. D.4.已知不重合的平面和直線,則“”的充分不必要條件是()A.內(nèi)有無數(shù)條直線與平行 B.且C.且 D.內(nèi)的任何直線都與平行5.設(shè),,分別是中,,所對邊的邊長,則直線與的位置關(guān)系是()A.平行 B.重合C.垂直 D.相交但不垂直6.如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則()A. B. C. D.7.若的展開式中的系數(shù)為150,則()A.20 B.15 C.10 D.258.已知函數(shù)在上有兩個零點,則的取值范圍是()A. B. C. D.9.已知滿足,,,則在上的投影為()A. B. C. D.210.正項等比數(shù)列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.11.如圖,在棱長為4的正方體中,E,F(xiàn),G分別為棱AB,BC,的中點,M為棱AD的中點,設(shè)P,Q為底面ABCD內(nèi)的兩個動點,滿足平面EFG,,則的最小值為()A. B. C. D.12.已知函數(shù)的圖象如圖所示,則可以為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若直線與直線交于點,則長度的最大值為____.14.設(shè),若函數(shù)有大于零的極值點,則實數(shù)的取值范圍是_____15.數(shù)列滿足,則,_____.若存在n∈N*使得成立,則實數(shù)λ的最小值為______16.曲線y=e-5x+2在點(0,3)處的切線方程為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當a=2時,求不等式的解集;(2)設(shè)函數(shù).當時,,求的取值范圍.18.(12分)已知函數(shù),.(1)若不等式的解集為,求的值.(2)若當時,,求的取值范圍.19.(12分)已知數(shù)列的前項和為,且滿足.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)證明:.20.(12分)已知橢圓C的離心率為且經(jīng)過點(1)求橢圓C的方程;(2)過點(0,2)的直線l與橢圓C交于不同兩點A、B,以O(shè)A、OB為鄰邊的平行四邊形OAMB的頂點M在橢圓C上,求直線l的方程.21.(12分)如圖,在平面直角坐標系中,橢圓的離心率為,且過點.求橢圓的方程;已知是橢圓的內(nèi)接三角形,①若點為橢圓的上頂點,原點為的垂心,求線段的長;②若原點為的重心,求原點到直線距離的最小值.22.(10分)在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標系中,曲線C2是圓心為(2,),半徑為1的圓.(1)求曲線C1的普通方程和C2的直角坐標方程;(2)設(shè)M為曲線C1上的點,N為曲線C2上的點,求|MN|的取值范圍.
2023學(xué)年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【答案解析】
直接根據(jù)三角函數(shù)的圖象平移規(guī)則得出正確的結(jié)論即可;【題目詳解】解:函數(shù),要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個單位.故選:D.【答案點睛】本題考查三角函數(shù)圖象平移的應(yīng)用問題,屬于基礎(chǔ)題.2、B【答案解析】
根據(jù)角終邊上的點坐標,求得,代入二倍角公式即可求得的值.【題目詳解】因為終邊上有一點,所以,故選:B【答案點睛】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.3、D【答案解析】
由題知,又,代入計算可得.【題目詳解】由題知,又.故選:D【答案點睛】本題主要考查了三角函數(shù)的定義,誘導(dǎo)公式,二倍角公式的應(yīng)用求值.4、B【答案解析】
根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個選項得到答案.【題目詳解】A.內(nèi)有無數(shù)條直線與平行,則相交或,排除;B.且,故,當,不能得到且,滿足;C.且,,則相交或,排除;D.內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.【答案點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力.5、C【答案解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點:直線與直線的位置關(guān)系6、A【答案解析】
作于,于,分析可得,,再根據(jù)正弦的大小關(guān)系判斷分析得,再根據(jù)線面角的最小性判定即可.【題目詳解】作于,于.因為平面平面,平面.故,故平面.故二面角為.又直線與平面所成角為,因為,故.故,當且僅當重合時取等號.又直線與平面所成角為,且為直線與平面內(nèi)的直線所成角,故,當且僅當平面時取等號.故.故選:A【答案點睛】本題主要考查了線面角與線線角的大小判斷,需要根據(jù)題意確定角度的正弦的關(guān)系,同時運用線面角的最小性進行判定.屬于中檔題.7、C【答案解析】
通過二項式展開式的通項分析得到,即得解.【題目詳解】由已知得,故當時,,于是有,則.故選:C【答案點睛】本題主要考查二項式展開式的通項和系數(shù)問題,意在考查學(xué)生對這些知識的理解掌握水平.8、C【答案解析】
對函數(shù)求導(dǎo),對a分類討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點處的函數(shù)值進行判斷求解.【題目詳解】∵,.當時,,在上單調(diào)遞增,不合題意.當時,,在上單調(diào)遞減,也不合題意.當時,則時,,在上單調(diào)遞減,時,,在上單調(diào)遞增,又,所以在上有兩個零點,只需即可,解得.綜上,的取值范圍是.故選C.【答案點睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點的問題,考查了函數(shù)的單調(diào)性及極值問題,屬于中檔題.9、A【答案解析】
根據(jù)向量投影的定義,即可求解.【題目詳解】在上的投影為.故選:A【答案點睛】本題考查向量的投影,屬于基礎(chǔ)題.10、D【答案解析】
設(shè)等比數(shù)列的公比為q,,運用等比數(shù)列的性質(zhì)和通項公式,以及等差數(shù)列的中項性質(zhì),解方程可得公比q.【題目詳解】由題意,正項等比數(shù)列中,,可得,即,與的等差中項為4,即,設(shè)公比為q,則,則負的舍去,故選D.【答案點睛】本題主要考查了等差數(shù)列的中項性質(zhì)和等比數(shù)列的通項公式的應(yīng)用,其中解答中熟記等比數(shù)列通項公式,合理利用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了方程思想和運算能力,屬于基礎(chǔ)題.11、C【答案解析】
把截面畫完整,可得在上,由知在以為圓心1為半徑的四分之一圓上,利用對稱性可得的最小值.【題目詳解】如圖,分別取的中點,連接,易證共面,即平面為截面,連接,由中位線定理可得,平面,平面,則平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方體中平面,從而有,∴,∴在以為圓心1為半徑的四分之一圓(圓在正方形內(nèi)的部分)上,顯然關(guān)于直線的對稱點為,,當且僅當共線時取等號,∴所求最小值為.故選:C.【答案點睛】本題考查空間距離的最小值問題,解題時作出正方體的完整截面求出點軌跡是第一個難點,第二個難點是求出點軌跡,第三個難點是利用對稱性及圓的性質(zhì)求得最小值.12、A【答案解析】
根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調(diào)遞增,且有一個零點,即可對選項逐個驗證即可得出.【題目詳解】首先對4個選項進行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個選項,對其在上的零點個數(shù)進行判斷,在上無零點,不符合題意,排除D;然后,對剩下的2個選項,進行單調(diào)性判斷,在上單調(diào)遞減,不符合題意,排除C.故選:A.【答案點睛】本題主要考查圖象的識別和函數(shù)性質(zhì)的判斷,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】
根據(jù)題意可知,直線與直線分別過定點,且這兩條直線互相垂直,由此可知,其交點在以為直徑的圓上,結(jié)合圖形求出線段的最大值即可.【題目詳解】由題可知,直線可化為,所以其過定點,直線可化為,所以其過定點,且滿足,所以直線與直線互相垂直,其交點在以為直徑的圓上,作圖如下:結(jié)合圖形可知,線段的最大值為,因為為線段的中點,所以由中點坐標公式可得,所以線段的最大值為.故答案為:【答案點睛】本題考查過交點的直線系方程、動點的軌跡問題及點與圓的位置關(guān)系;考查數(shù)形結(jié)合思想和運算求解能力;根據(jù)圓的定義得到交點在以為直徑的圓上是求解本題的關(guān)鍵;屬于中檔題.14、【答案解析】
先求導(dǎo)數(shù),求解導(dǎo)數(shù)為零的根,結(jié)合根的分布求解.【題目詳解】因為,所以,令得,因為函數(shù)有大于0的極值點,所以,即.【答案點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值點問題,極值點為導(dǎo)數(shù)的變號零點,側(cè)重考查轉(zhuǎn)化化歸思想.15、【答案解析】
利用“退一作差法”求得數(shù)列的通項公式,將不等式分離常數(shù),利用商比較法求得的最小值,由此求得的取值范圍,進而求得的最小值.【題目詳解】當時兩式相減得所以當時,滿足上式綜上所述存在使得成立的充要條件為存在使得,設(shè),所以,即,所以單調(diào)遞增,的最小項,即有的最小值為.故答案為:(1).(2).【答案點睛】本小題主要考查根據(jù)遞推關(guān)系式求數(shù)列的通項公式,考查數(shù)列單調(diào)性的判斷方法,考查不等式成立的存在性問題的求解策略,屬于中檔題.16、.【答案解析】
先利用導(dǎo)數(shù)求切線的斜率,再寫出切線方程.【題目詳解】因為y′=-5e-5x,所以切線的斜率k=-5e0=-5,所以切線方程是:y-3=-5(x-0),即y=-5x+3.故答案為y=-5x+3.【答案點睛】(1)本題主要考查導(dǎo)數(shù)的幾何意義和函數(shù)的求導(dǎo),意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)函數(shù)在點處的導(dǎo)數(shù)是曲線在處的切線的斜率,相應(yīng)的切線方程是三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【答案解析】試題分析:(1)當時;(2)由等價于,解之得.試題解析:(1)當時,.解不等式,得.因此,的解集為.(2)當時,,當時等號成立,所以當時,等價于.①當時,①等價于,無解.當時,①等價于,解得.所以的取值范圍是.考點:不等式選講.18、(1);(2)【答案解析】試題分析:(1)求得的解集,根據(jù)集合相等,列出方程組,即可求解的值;(2)①當時,恒成立,②當時,轉(zhuǎn)化為,設(shè),求得函數(shù)的最小值,即可求解的取值范圍.試題解析:(1)由,得,因為不等式的解集為,所以,故不等式可化為,解得,所以,解得.(2)①當時,恒成立,所以.②當時,可化為,設(shè),則,所以當時,,所以.綜上,的取值范圍是.19、(Ⅰ),.(Ⅱ)見解析【答案解析】
(1)由,分和兩種情況,即可求得數(shù)列的通項公式;(2)由題,得,利用等比數(shù)列求和公式,即可得到本題答案.【題目詳解】(Ⅰ)解:由題,得當時,,得;當時,,整理,得.數(shù)列是以1為首項,2為公比的等比數(shù)列,,;(Ⅱ)證明:由(Ⅰ)知,,故.故得證.【答案點睛】本題主要考查根據(jù)的關(guān)系式求通項公式以及利用等比數(shù)列的前n項和公式求和并證明不等式,考查學(xué)生的運算求解能力和推理證明能力.20、(1)(2)【答案解析】
(1)根據(jù)橢圓的離心率、橢圓上點的坐標以及列方程,由此求得,進而求得橢圓的方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫出韋達定理.根據(jù)平行四邊形的性質(zhì)以及向量加法的幾何意義得到,由此求得點的坐標,將的坐標代入橢圓方程,化簡后可求得直線的斜率,由此求得直線的方程.【題目詳解】(1)由橢圓的離心率為,點在橢圓上,所以,且解得,所以橢圓的方程為.(2)顯然直線的斜率存在,設(shè)直線的斜率為,則直線的方程為,設(shè),由消去得,所以,由已知得,所以,由于點都在橢圓上,所以,展開有,又,所以,經(jīng)檢驗滿足,故直線的方程為.【答案點睛】本小題主要考查根據(jù)橢圓的離心率和橢圓上一點的坐標求橢圓方程,考查直線和橢圓的位置關(guān)系,考查運算求解能力,屬于中檔題.21、;①;②.【答案解析】
根據(jù)題意列出方程組求解即可;①由原點為的垂心可得,軸,設(shè),則,,根據(jù)求出線段的長;②設(shè)中點為,直線與橢圓交于,兩點,為的重心,則,設(shè):,,,則,當斜率不存在時,則到直線的距離為1,,由,則,,,得出,根據(jù)求解即可.【題目詳解】解:設(shè)焦距為,由題意知:,因此,橢圓的方程為:;①由題意知:,故軸,設(shè),則,,,解得:或,,不重合,故,,故;②設(shè)中點為,直線與橢圓交于,兩點,為的重心,則,當斜率不存在時,則到直線的距離為1;設(shè):,,,則,,則,則:,,代入式子得:,設(shè)到直線的距離為,則時,;綜上,原點到直線距離的最小值為.【答案點睛】本題考查橢圓的方程的知識點,結(jié)合運用向量,韋達定理和點到直線的距離的知識,屬于難題.22、(1)C1:y2=1,C2:x2+(y﹣2)2=1;(2)[0,1]【答案解析】
(Ⅰ)消去參數(shù)φ可得C1的直角坐標方程,易得曲線C2的圓心的直角坐標為(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 創(chuàng)業(yè)成功者的案例故事
- 臨床輸血技術(shù)規(guī)范
- 心梗術(shù)后健康教育
- 技術(shù)培訓(xùn)課程
- 婦科病人術(shù)后護理指導(dǎo)
- 定制家具運輸服務(wù)合同
- 護理安全的影響因素
- 提升社會公共安全意識的咨詢合同
- 新零售模式下的消費體驗論壇合同
- 阿克蘇工業(yè)職業(yè)技術(shù)學(xué)院《器官系統(tǒng)模塊一實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 《建筑BIM應(yīng)用基礎(chǔ)》課程標準(含課程思政)
- DB32/T 4743-2024重點化工企業(yè)全流程自動化控制配備和提升規(guī)范
- 2024-2030年中國心理傾向測驗設(shè)備資金申請報告
- 戰(zhàn)略管理知到智慧樹章節(jié)測試課后答案2024年秋華南理工大學(xué)
- 足球場運動草坪全年養(yǎng)護計劃
- 2024ESC心房顫動管理指南解讀
- 2024年社會工作者(中級)-社會綜合能力考試歷年真題含答案
- 防雷防靜電應(yīng)急救援演練實施方案
- 建筑輕質(zhì)條板隔墻技術(shù)規(guī)程知識培訓(xùn)
- 應(yīng)急第一響應(yīng)人理論考試試卷(含答案)
- 2023年EAS系統(tǒng)標準操作手冊固定資產(chǎn)
評論
0/150
提交評論