版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.計算得()A.1 B.﹣1 C. D.2.如圖,BA=BC,∠ABC=80°,將△BDC繞點B逆時針旋轉(zhuǎn)至△BEA處,點E,A分別是點D,C旋轉(zhuǎn)后的對應(yīng)點,連接DE,則∠BED為()A.50° B.55° C.60° D.65°3.若將拋物線向右平移2個單位后,所得拋物線的表達式為y=2x2,則原來拋物線的表達式為()A.y=2x2+2 B.y=2x2﹣2 C.y=2(x+2)2 D.y=2(x﹣2)24.如圖,在矩形中,,對角線相交于點,垂直平分于點,則的長為()A.4 B. C.5 D.5.如圖,△ABC中,∠B=70°,則∠BAC=30°,將△ABC繞點C順時針旋轉(zhuǎn)得△EDC.當(dāng)點B的對應(yīng)點D恰好落在AC上時,∠CAE的度數(shù)是()A.30° B.40° C.50° D.60°6.如圖,的直徑,是的弦,,垂足為,且,則的長為()A.10 B.12 C.16 D.187.下列四個圖形是中心對稱圖形().A. B. C. D.8.如圖,⊙O是△ABC的外接圓,連接OC、OB,∠BOC=100°,則∠A的度數(shù)為()A.30° B.40° C.50° D.60°9.二次函數(shù)y=x1+bx﹣t的對稱軸為x=1.若關(guān)于x的一元二次方程x1+bx﹣t=0在﹣1<x<3的范圍內(nèi)有實數(shù)解,則t的取值范圍是()A.﹣4≤t<5 B.﹣4≤t<﹣3 C.t≥﹣4 D.﹣3<t<510.如圖,小明將一個含有角的直角三角板繞著它的一條直角邊所在的直線旋轉(zhuǎn)一周,形成一個幾何體,將這個幾何體的側(cè)面展開,得到的大致圖形是()A. B.C. D.11.下列標(biāo)志中是中心對稱圖形的是()A. B. C. D.12.如表記錄了甲、乙、丙、丁四名跳高運動員最近幾次選拔賽成績的平均數(shù)與方差:甲乙丙丁平均數(shù)(cm)181186181186方差3.53.56.57.5根據(jù)表中數(shù)據(jù),要從中選擇一名成績好且發(fā)揮穩(wěn)定的運動員參加比賽,應(yīng)該選擇()A.甲 B.乙 C.丙 D.丁二、填空題(每題4分,共24分)13.如圖,點A(m,2),B(5,n)在函數(shù)(k>0,x>0)的圖象上,將該函數(shù)圖象向上平移2個單位長度得到一條新的曲線,點A、B的對應(yīng)點分別為A′、B′.圖中陰影部分的面積為8,則k的值為.14.如圖,一拋物線與軸相交于,兩點,其頂點在折線段上移動,已知點,,的坐標(biāo)分別為,,,若點橫坐標(biāo)的最小值為0,則點橫坐標(biāo)的最大值為______.15.二次函數(shù)y=3(x+2)的頂點坐標(biāo)______.16.計算:|﹣3|+(2019﹣π)0﹣+()-2=_______.17.如圖,在平面直角坐標(biāo)系中,CO、CB是⊙D的弦,⊙D分別與軸、軸交于B、A兩點,∠OCB=60o,點A的坐標(biāo)為(0,1),則⊙D的弦OB的長為____________。18.如圖,量角器的0度刻度線為,將一矩形直角與量角器部分重疊,使直尺一邊與量角器相切于點,直尺另一邊交量角器于點,量得,點在量角器上的度數(shù)為60°,則該直尺的寬度為_________________.三、解答題(共78分)19.(8分)如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點C與原點O重合,點B在y軸的正半軸上,點A在函數(shù)y=(k>0,x>0)的圖象上,點D的坐標(biāo)為(4,3).(1)求k的值;(2)若將菱形ABCD沿x軸正方向平移,當(dāng)菱形的頂點D落在函數(shù)y=(k>0,x>0)的圖象上時,求菱形ABCD沿x軸正方向平移的距離.20.(8分)已知關(guān)于x的方程x2﹣(k+1)x+k2+1=0有兩個實數(shù)根.(1)求k的取值范圍;(2)若方程的兩實數(shù)根分別為x1,x2,且x12+x22=6x1x2﹣15,求k的值.21.(8分)點為圖形上任意一點,過點作直線垂足為,記的長度為.定義一:若存在最大值,則稱其為“圖形到直線的限距離”,記作;定義二:若存在最小值,則稱其為“圖形到直線的基距離”,記作;(1)已知直線,平面內(nèi)反比例函數(shù)在第一象限內(nèi)的圖象記作則.(2)已知直線,點,點是軸上一個動點,的半徑為,點在上,若求此時的取值范圍,(3)已知直線恒過定點,點恒在直線上,點是平面上一動點,記以點為頂點,原點為對角線交點的正方形為圖形,若請直接寫出的取值范圍.22.(10分)已知:如圖,Rt△ABC中,∠ACB=90°,sinB=,點D、E分別在邊AB、BC上,且AD∶DB=2∶3,DE⊥BC.(1)求∠DCE的正切值;(2)如果設(shè),,試用、表示.23.(10分)學(xué)校要在教學(xué)樓側(cè)面懸掛中考勵志的標(biāo)語牌,如圖所示,為了使標(biāo)語牌醒目,計劃設(shè)計標(biāo)語牌的寬度為BC,為了測量BC,在距教學(xué)樓20米的升旗臺P處利用測角儀測得教學(xué)樓AB的頂端點B的仰角為,點C的仰角為,求標(biāo)語牌BC的寬度(結(jié)果保留根號)
24.(10分)如圖,△ABC是等邊三角形,點D,E分別在BC,AC上,且BD=CE,AD與BE相交于點F,(1)證明:△ABD≌△BCE;(2)證明:△ABE∽△FAE;(3)若AF=7,DF=1,求BD的長.25.(12分)如圖,四邊形ABCD中,對角線AC、BD相交于點O,且AD//BC,BD的垂直平分線經(jīng)過點O,分別與AD、BC交于點E、F(1)求證:四邊形ABCD為平行四邊形;(2)求證:四邊形BFDE為菱形.26.樹AB和木桿CD在同一時刻的投影如圖所示,木桿CD高2m,影子DE長3m;若樹的影子BE長7m,則樹AB高多少m?
參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)題意對原式變形后,利用同分母分式的減法法則計算,約分即可得到結(jié)果.【詳解】解:=1.故選:A.【點睛】本題考查分式的加減法,熟練掌握分式的加減法運算法則是解答本題的關(guān)鍵.2、A【分析】首先根據(jù)旋轉(zhuǎn)的性質(zhì),得出∠CBD=∠ABE,BD=BE;其次結(jié)合圖形,由等量代換,得∠EBD=∠ABC;最后根據(jù)等腰三角形的性質(zhì),得出∠BED=∠BDE,利用三角形內(nèi)角和定理求解即可.【詳解】∵△BDC繞點B逆時針旋轉(zhuǎn)至△BEA處,點E,A分別是點D,C旋轉(zhuǎn)后的對應(yīng)點,∴∠CBD=∠ABE,BD=BE,∵∠ABC=∠CBD+∠ABD,∠EBD=∠ABE+∠ABD,∠ABC=80°,∴∠EBD=∠ABC=80°,∵BD=BE,∴∠BED=∠BDE=(180°-∠EBD)=(180°-80°)=50°,故選:A.【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì),以及三角形內(nèi)角和定理.解題的關(guān)鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)得出旋轉(zhuǎn)前后的對應(yīng)角、對應(yīng)邊分別相等,利用等腰三角形的性質(zhì)得出“等邊對等角”,再結(jié)合三角形內(nèi)角和定理,即可得解.3、C【解析】分析:根據(jù)平移的規(guī)律,把已知拋物線的解析式向左平移即可得到原來拋物線的表達式.詳解:∵將拋物線向右平移1個單位后,所得拋物線的表達式為y=1x1,∴原拋物線可看成由拋物線y=1x1向左平移1個單位可得到原拋物線的表達式,∴原拋物線的表達式為y=1(x+1)1.故選C.點睛:本題主要考查了二次函數(shù)的圖象與幾何變換,掌握函數(shù)圖象的平移規(guī)律是解題的關(guān)鍵,即“左加右減,上加下減”.4、B【分析】由矩形的性質(zhì)和線段垂直平分線的性質(zhì)證出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.【詳解】解:∵四邊形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD=;故選:B.【點睛】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)、線段垂直平分線的性質(zhì)、勾股定理;熟練掌握矩形的性質(zhì),證明三角形是等邊三角形是解決問題的關(guān)鍵.5、C【解析】由三角形內(nèi)角和定理可得∠ACB=80°,由旋轉(zhuǎn)的性質(zhì)可得AC=CE,∠ACE=∠ACB=80°,由等腰的性質(zhì)可得∠CAE=∠AEC=50°.【詳解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵將△ABC繞點C順時針旋轉(zhuǎn)得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故選C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),熟練運用旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.6、C【分析】連接OC,根據(jù)圓的性質(zhì)和已知條件即可求出OC=OB=,BE=,從而求出OE,然后根據(jù)垂徑定理和勾股定理即可求CE和DE,從而求出CD.【詳解】解:連接OC∵,∴OC=OB=,BE=∴OE=OB-BE=6∵是的弦,,∴DE=CE=∴CD=DE+CE=16故選:C.【點睛】此題考查的是垂徑定理和勾股定理,掌握垂徑定理和勾股定理的結(jié)合是解決此題的關(guān)鍵.7、C【分析】根據(jù)中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】A、不是中心對稱圖形,故本選項不合題意;B、不是中心對稱圖形,故本選項不合題意;C、是中心對稱圖形,故本選項符合題意;D、不是中心對稱圖形,故本選項不合題意.故選:C.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.8、C【分析】直接根據(jù)圓周角定理即可得出結(jié)論.【詳解】∵⊙O是△ABC的外接圓,∠BOC=100°,∴∠A=∠BOC==50°.故選:C.【點睛】本題考查的是圓周角定理,熟知在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解答此題的關(guān)鍵.9、A【解析】根據(jù)拋物線對稱軸公式可先求出b的值,一元二次方程x1+bx﹣t=0在﹣1<x<3的范圍內(nèi)有實數(shù)解相當(dāng)于y=x1﹣bx與直線y=t的在﹣1<x<3的范圍內(nèi)有交點,即直線y=t應(yīng)介于過y=x1﹣bx在﹣1<x<3的范圍內(nèi)的最大值與最小值的直線之間,由此可確定t的取值范圍.【詳解】解:∵拋物線的對稱軸x==1,∴b=﹣4,則方程x1+bx﹣t=0,即x1﹣4x﹣t=0的解相當(dāng)于y=x1﹣4x與直線y=t的交點的橫坐標(biāo),∵方程x1+bx﹣t=0在﹣1<x<3的范圍內(nèi)有實數(shù)解,∴當(dāng)x=﹣1時,y=1+4=5,當(dāng)x=3時,y=9﹣11=﹣3,又∵y=x1﹣4x=(x﹣1)1﹣4,∴當(dāng)﹣4≤t<5時,在﹣1<x<3的范圍內(nèi)有解.∴t的取值范圍是﹣4≤t<5,故選:A.【點睛】本題主要考查了二次函數(shù)與一元二次方程之間的關(guān)系,一元二次方程的解相當(dāng)于與直線y=k的交點的橫坐標(biāo),解的數(shù)量就是交點的個數(shù),熟練將二者關(guān)系進行轉(zhuǎn)化是解題的關(guān)鍵.10、C【分析】先根據(jù)面動成體得到圓錐,進而可知其側(cè)面展開圖是扇形,根據(jù)扇形的弧長公式求得扇形的圓心角,即可判別.【詳解】設(shè)含有角的直角三角板的直角邊長為1,則斜邊長為,將一個含有角的直角三角板繞著它的一條直角邊所在的直線旋轉(zhuǎn)一周,形成一個幾何體是圓錐,此圓錐的底面周長為:,圓錐的側(cè)面展開圖是扇形,,即,∴,∵,∴圖C符合題意,故選:C.【點睛】本題考查了點、線、面、體中的面動成體,解題關(guān)鍵是根據(jù)扇形的弧長公式求得扇形的圓心角.11、B【分析】根據(jù)中心對稱圖形的定義即可解答.【詳解】解:A、是軸對稱圖形,不是中心對稱的圖形,不合題意;
B、是中心對稱圖形,符合題意;
C、既不是軸對稱圖形,也不是中心對稱的圖形,不合題意;
D、是軸對稱圖形,不是中心對稱的圖形,不合題意.
故選:B.【點睛】本題考查中心對稱圖形的定義:繞對稱中心旋轉(zhuǎn)180度后所得的圖形與原圖形完全重合.12、B【分析】根據(jù)平均數(shù)與方差的意義解答即可.【詳解】解:,乙與丁二選一,又,選擇乙.【點睛】本題考查數(shù)據(jù)的平均數(shù)與方差的意義,理解兩者所代表的的意義是解答關(guān)鍵.二、填空題(每題4分,共24分)13、2.【解析】試題分析:∵將該函數(shù)圖象向上平移2個單位長度得到一條新的曲線,點A、B的對應(yīng)點分別為A′、B′,圖中陰影部分的面積為8,∴5﹣m=4,∴m=2,∴A(2,2),∴k=2×2=2.故答案為2.考點:2.反比例函數(shù)系數(shù)k的幾何意義;2.平移的性質(zhì);3.綜合題.14、7【分析】當(dāng)點橫坐標(biāo)的最小值為0時,拋物線頂點在C點,據(jù)此可求出拋物線的a值,再根據(jù)點橫坐標(biāo)的最大值時,頂點在E點,求出此時的拋物線即可求解.【詳解】當(dāng)點橫坐標(biāo)的最小值為0時,拋物線頂點在C點,設(shè)該拋物線的解析式為:y=a(x+2)2+8,代入點B(0,0)得:0=a(x+2)2+8,則a=?2,即:B點橫坐標(biāo)取最小值時,拋物線的解析式為:y=-2(x+2)2+8.當(dāng)A點橫坐標(biāo)取最大值時,拋物線頂點應(yīng)取E,則此時拋物線的解析式:y=-2(x?8)2+2,令y=0,解得x1=7,x2=9∴點A的橫坐標(biāo)的最大值為7.故答案為7.【點睛】此題主要考查二次函數(shù)的平移問題,解題的關(guān)鍵是熟知待定系數(shù)法求解解析式.15、(-2,0);【分析】由二次函數(shù)的頂點式,即可得到答案.【詳解】解:二次函數(shù)y=3(x+2)的頂點坐標(biāo)是(,0);故答案為:(,0);【點睛】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握二次函數(shù)的頂點坐標(biāo).16、【分析】直接利用負(fù)指數(shù)冪法則以及絕對值的代數(shù)意義和零指數(shù)冪的法則、算術(shù)平方根的性質(zhì)分別化簡得出答案.【詳解】解:原式=,故答案為:.【點睛】此題主要考查了負(fù)指數(shù)冪法則以及絕對值的代數(shù)意義和零指數(shù)冪的法則、算術(shù)平方根的性質(zhì),正確利用法則化簡各數(shù)是解題關(guān)鍵.17、【分析】首先連接AB,由∠AOB=90°,可得AB是直徑,又由∠OAB=∠OCB=60°,然后根據(jù)含30°的直角三角形的性質(zhì),求得AB的長,然后根據(jù)勾股定理,求得OB的長.【詳解】解:連接AB,
∵∠AOB=90°,
∴AB是直徑,
∵∠OAB=∠OCB=60°,
∴∠ABO=30°,
∵點A的坐標(biāo)為(0,1),
∴OA=1,
∴AB=2OA=2,
∴OB=,故選:C.【點睛】此題考查了圓周角定理以及勾股定理.注意準(zhǔn)確作出輔助線是解此題的關(guān)鍵.18、【分析】連接OC,OD,OC與AD交于點E,根據(jù)圓周角定理有根據(jù)垂徑定理有:解直角即可.【詳解】連接OC,OD,OC與AD交于點E,直尺的寬度:故答案為【點睛】考查垂徑定理,熟記垂徑定理是解題的關(guān)鍵.三、解答題(共78分)19、(1)k=32;(2)菱形ABCD平移的距離為.【分析】(1)由題意可得OD=5,從而可得點A的坐標(biāo),從而可得k的值;(2)將菱形ABCD沿x軸正方向平移,使得點D落在函數(shù)(x>0)的圖象D’點處,由題意可知D’的縱坐標(biāo)為3,從而可得橫坐標(biāo),從而可知平移的距離.【詳解】(1)過點D作x軸的垂線,垂足為F,∵點D的坐標(biāo)為(4,3),∴OF=4,DF=3,∴OD=5,∴AD=5,∴點A坐標(biāo)為(4,8),∴k=xy=4×8=32,∴k=32;(2)將菱形ABCD沿x軸正方向平移,使得點D落在函數(shù)(x>0)的圖象D’點處,過點D’做x軸的垂線,垂足為F’.∵DF=3,∴D’F’=3,∴點D’的縱坐標(biāo)為3,∵點D’在的圖象上,∴3=,解得=,即∴菱形ABCD平移的距離為.考點:1.勾股定理;2.反比例函數(shù);3.菱形的性質(zhì);4.平移.20、(1)k≥;(2)1【分析】(1)根據(jù)判別式與根的個數(shù)之間的關(guān)系,列不等式計算即可;(2)根據(jù)一元二次方程根與系數(shù)間的關(guān)系表示出,,再由代入進行計算即可.【詳解】解:(1)由題意,得△=[﹣(k+1)]2﹣1(k2+1)=2k﹣3≥0,解得,∴k的取值范圍為k≥.(2)∵由根與系數(shù)的關(guān)系,得x1+x2=k+1,x1?x2=k2+1,∵x12+x22=6x1x2﹣15,∴(x1+x2)2﹣8x1x2+15=0,∴k2﹣2k﹣8=0,解得:k1=1,k2=﹣2,又∵k≥,∴k=1.【點睛】本題考查了一元二次方程根的個數(shù)與判別式之間的關(guān)系,根與系數(shù)的關(guān)系,熟知以上運算是解題的關(guān)鍵.21、(1);(2)或;(3)或【分析】(1)作直線:平行于直線,且與H相交于點P,連接PO并延長交直線于點Q,作PM⊥x軸,根據(jù)只有一個交點可求出b,再聯(lián)立求出P的坐標(biāo),從而判斷出PQ平分∠AOB,再利用直線表達式求A、B坐標(biāo)證明OA=OB,從而證出PQ即為最小距離,最后利用勾股定理計算即可;(2)過點作直線,可判斷出上的點到直線的最大距離為,然后根據(jù)最大距離的范圍求出TH的范圍,從而得到FT的范圍,根據(jù)范圍建立不等式組求解即可;(3)把點P坐標(biāo)帶入表達式,化簡得到關(guān)于a、b的等式,從而推出直線的表達式,根據(jù)點E的坐標(biāo)可確定點E所在直線表達式,再根據(jù)最小距離為0,推出直線一定與圖形K相交,從而分兩種情況畫圖求解即可.【詳解】解:(1)作直線:平行于直線,且與H相交于點P,連接PO并延長交直線于點Q,作PM⊥x軸,∵直線:與H相交于點P,∴,即,只有一個解,∴,解得,∴,聯(lián)立,解得,即,∴,且點P在第一、三象限夾角的角平分線上,即PQ平分∠AOB,∴為等腰直角三角形,且OP=2,∵直線:,∴當(dāng)時,,當(dāng)時,,∴A(-2,0),B(0,-2),∴OA=OB=2,又∵OQ平分∠AOB,∴OQ⊥AB,即PQ⊥AB,∴PQ即為H上的點到直線的最小距離,∵OA=OB,∴,∴AQ=OQ,∴在中,OA=2,則OQ=,∴,即;(2)由題過點作直線,則上的點到直線的最大距離為,∵,即,∴,由題,則,∴,又∵,∴,解得或;(3)∵直線恒過定點,∴把點P代入得:,整理得:,∴,化簡得,∴,又∵點恒在直線上,∴直線的表達式為:,∵,∴直線一定與以點為頂點,原點為對角線交點的正方形圖形相交,∵,∴點E一定在直線上運動,情形一:如圖,當(dāng)點E運動到所對頂點F在直線上時,由題可知E、F關(guān)于原點對稱,∵,∴,把點F代入得:,解得:,∵當(dāng)點E沿直線向上運動時,對角線變短,正方形變小,無交點,∴點E要沿直線向下運動,即;情形二:如圖,當(dāng)點E運動到直線上時,把點E代入得:,解得:,∵當(dāng)點E沿直線向下運動時,對角線變短,正方形變小,無交點,∴點E要沿直線向上運動,即,綜上所述,或.【點睛】本題考查新型定義題,弄清題目含義,正確畫出圖形是解題的關(guān)鍵.22、(1);(2).【解析】試題分析:在中,根據(jù),設(shè)則根據(jù)得出:根據(jù)平行線分線段成比例定理,用表示出即可求得.先把用表示出來,根據(jù)向量加法的三角形法則即可求出.試題解析:(1),∴,∴設(shè)則即又,∴AC//DE.∴,,∴,.∴,.∴.(2)∵,,∴..∵,∴.23、BC=【分析】根據(jù)正切的定義求出,根據(jù)等腰直角三角形的性質(zhì)求出,結(jié)合圖形計算,得到答案.【詳解】解:由題意知,PD=20,,在中,,則,在中,,,,故答案為:.【點睛】本題考查的是解直角三角形的應(yīng)用仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.24、(1)證明見解析;(2)證明見解析;(3)BD=2.【分析】(1)根據(jù)等邊三角形的性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報參考:緊密型城市醫(yī)療集團內(nèi)患者就醫(yī)行為與衛(wèi)生資源配置的協(xié)同性研究
- 2025年專題講座心得體會樣本(3篇)
- 2025年度木材行業(yè)木方材料進出口采購合同范本4篇
- 二零二五版現(xiàn)代農(nóng)業(yè)園區(qū)麻石灌溉系統(tǒng)合同4篇
- 二零二五年度知識產(chǎn)權(quán)許可使用合同爭議處理規(guī)則范本4篇
- 二零二五年度城市公交公司駕駛員服務(wù)合同標(biāo)準(zhǔn)模板3篇
- 2025年公共安全項目投標(biāo)失敗應(yīng)急響應(yīng)與合同條款合同3篇
- 二零二五年度出差安全教育與安全保障合作協(xié)議4篇
- 二零二五年度出境游領(lǐng)隊導(dǎo)游服務(wù)合同4篇
- 二零二五版夾板行業(yè)供應(yīng)鏈管理合作協(xié)議4篇
- 2025貴州貴陽市屬事業(yè)單位招聘筆試和高頻重點提升(共500題)附帶答案詳解
- 2024年住院醫(yī)師規(guī)范化培訓(xùn)師資培訓(xùn)理論考試試題
- 期末綜合測試卷(試題)-2024-2025學(xué)年五年級上冊數(shù)學(xué)人教版
- 2024年廣東省公務(wù)員錄用考試《行測》試題及答案解析
- 結(jié)構(gòu)力學(xué)本構(gòu)模型:斷裂力學(xué)模型:斷裂力學(xué)實驗技術(shù)教程
- 無人機技術(shù)與遙感
- 中醫(yī)藥適宜培訓(xùn)-刮痧療法教學(xué)課件
- 免疫組化he染色fishish
- 新東方四級詞匯-正序版
- 借名購車位協(xié)議書借名購車位協(xié)議書模板(五篇)
- 同步輪尺寸參數(shù)表詳表參考范本
評論
0/150
提交評論