(新高考)高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題7.4《數(shù)列求和》(解析版)_第1頁
(新高考)高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題7.4《數(shù)列求和》(解析版)_第2頁
(新高考)高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題7.4《數(shù)列求和》(解析版)_第3頁
(新高考)高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題7.4《數(shù)列求和》(解析版)_第4頁
(新高考)高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題7.4《數(shù)列求和》(解析版)_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

專題7.4數(shù)列求和新課程考試要求1.掌握等差數(shù)列、等比數(shù)列前n項和公式及其應(yīng)用..核心素養(yǎng)本節(jié)涉及所有的數(shù)學(xué)核心素養(yǎng):邏輯推理、數(shù)學(xué)運算、數(shù)學(xué)抽象、數(shù)學(xué)建模等.考向預(yù)測1.等差數(shù)列與等比數(shù)列綜合確定基本量,利用“裂項相消法”“錯位相減法”等求和.2.簡單的等差數(shù)列、等比數(shù)列求和..3.往往以數(shù)列求和問題為先導(dǎo),在解決數(shù)列基本問題后考查數(shù)列求和,在求和后再與不等式、函數(shù)、最值等問題綜合,近幾年難度有所降低,.考查公式法求和、“裂項相消法”、“錯位相減法”較多.4.復(fù)習(xí)中注意:(1)靈活選用數(shù)列求和公式的形式,關(guān)注應(yīng)用公式的條件;(2)熟悉分組求和法、裂項相消法及錯位相減法.【知識清單】知識點一.?dāng)?shù)列求和1.等差數(shù)列的前和的求和公式:.2.等比數(shù)列前項和公式一般地,設(shè)等比數(shù)列的前項和是,當(dāng)時,或;當(dāng)時,(錯位相減法).3.數(shù)列前項和①重要公式:(1)(2)(3)(4)②等差數(shù)列中,;③等比數(shù)列中,.【考點分類剖析】考點一:公式法、分組轉(zhuǎn)化法求和【典例1】(2021·全國高三其他模擬)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0,________,在以下三個條件中任選一個填入以上橫線上,并求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0.【答案】答案不唯一,具體見解析.【解析】選條件①時,直接利用數(shù)列遞推關(guān)系式求出數(shù)列的通項公式,進一步利用分組法求出數(shù)列的和;選條件②時,首先利用構(gòu)造新數(shù)列法求出數(shù)列的通項公式,進一步用公式法求出求出數(shù)列的和;選條件③時,首先利用構(gòu)造新數(shù)列法求出數(shù)列的通項公式,進一步利用分組法求出數(shù)列的和.【詳解】解:選條件①時,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0,所以SKIPIF1<0為首項為2,公比為3的等比數(shù)列,所以SKIPIF1<0,即SKIPIF1<0因為SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0SKIPIF1<0.即SKIPIF1<0選條件②時,SKIPIF1<0;整理得:SKIPIF1<0,故數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,SKIPIF1<0為公比的等比數(shù)列.所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為等差數(shù)列,所以數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.選條件③時,由于SKIPIF1<0①,當(dāng)SKIPIF1<0時,SKIPIF1<0,②,①-②得:SKIPIF1<0,所以數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,SKIPIF1<0為公比的等比數(shù)列,所以SKIPIF1<0,則SKIPIF1<0,所以數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0SKIPIF1<0.即SKIPIF1<0所以SKIPIF1<0.【典例2】(2019·天津高考真題(理))設(shè)是等差數(shù)列,是等比數(shù)列.已知.(Ⅰ)求和的通項公式;(Ⅱ)設(shè)數(shù)列滿足其中.(i)求數(shù)列的通項公式;(ii)求.【答案】(Ⅰ);(Ⅱ)(i)(ii)【解析】(Ⅰ)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為.依題意得,解得,故,.所以,的通項公式為,的通項公式為.(Ⅱ)(i).所以,數(shù)列的通項公式為.(ii).【總結(jié)提升】1.公式法:如果一個數(shù)列是等差、等比數(shù)列或者是可以轉(zhuǎn)化為等差、等比數(shù)列的數(shù)列,我們可以運用等差、等比數(shù)列的前項和的公式來求和.對于一些特殊的數(shù)列(正整數(shù)數(shù)列、正整數(shù)的平方和立方數(shù)列等)也可以直接使用公式求和.2.分組轉(zhuǎn)化法求和的常見類型(1)若an=bn±cn,且{bn},{cn}為等差或等比數(shù)列,可采用分組轉(zhuǎn)化法求{an}的前n項和.(2)通項公式為an=eq\b\lc\{\rc\(\a\vs4\al\co1(bn,n為奇數(shù),,cn,n為偶數(shù)))的數(shù)列,其中數(shù)列{bn},{cn}是等比數(shù)列或等差數(shù)列,可采用分組轉(zhuǎn)化法求和.3.分組轉(zhuǎn)化求和法:有一類數(shù)列SKIPIF1<0,它既不是等差數(shù)列,也不是等比數(shù)列,但是數(shù)列SKIPIF1<0是等差數(shù)列或等比數(shù)列或常見特殊數(shù)列,則可以將這類數(shù)列適當(dāng)拆開,可分為幾個等差、等比數(shù)列或常見的特殊數(shù)列,然后分別求和,再將其合并即可.4.倒序相加法:類似于等差數(shù)列的前項和的公式的推導(dǎo)方法,如果一個數(shù)列的前項中首末兩端等“距離”的兩項的和相等或等于同一個常數(shù),那么求這個數(shù)列的前項和即可用倒序相加法,如等差數(shù)列的前項和公式即是用此法推導(dǎo)的.5.并項求和法:一個數(shù)列的前項和中,可兩兩結(jié)合求解,則稱之為并項求和.形如類型,可采用兩項合并求解.例如,.【變式探究】1.(2020屆山東省濟寧市第一中學(xué)高三二輪檢測)已知數(shù)列中,,,.(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的前項和.【答案】(1)證明見解析(2)【解析】(1)證明:因為所以,又因為,則,所以數(shù)列是首項為2,公比為2的等比數(shù)列.(2)由(1)知,所以,所以2.(2021·全國高三其他模擬(文))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求證:數(shù)列SKIPIF1<0是等比數(shù)列;(2)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項的和為SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)證明見解析;(2)證明見解析.【解析】(1)利用定義法求SKIPIF1<0為定值即可;(2)利用分組求和法求得SKIPIF1<0,即可得證.【詳解】(1)因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項為1,公比為SKIPIF1<0的等比數(shù)列.(2)由(1)得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.考點二:錯位相減法求和【典例3】(2021·陜西高三其他模擬(理))數(shù)列SKIPIF1<0前n項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的通項公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)利用SKIPIF1<0,將SKIPIF1<0變形,再利用累加法即可解出SKIPIF1<0,則可求出SKIPIF1<0的通項公式.(2)利用錯位相減,求出SKIPIF1<0即可.【詳解】(1)數(shù)列SKIPIF1<0前n項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0①.當(dāng)SKIPIF1<0時,解得SKIPIF1<0;①式轉(zhuǎn)換為SKIPIF1<0,整理得:SKIPIF1<0,利用疊加法:SKIPIF1<0,所以SKIPIF1<0,整理得:SKIPIF1<0(首項符合通項),故SKIPIF1<0.(2)由(1)得:SKIPIF1<0,所以:SKIPIF1<0,故SKIPIF1<0①,SKIPIF1<0②,①-②得:SKIPIF1<0,整理得:SKIPIF1<0.【典例4】(2019·天津高考真題(文))設(shè)是等差數(shù)列,是等比數(shù)列,公比大于,已知,,.(Ⅰ)求和的通項公式;(Ⅱ)設(shè)數(shù)列滿足求.【答案】(I),;(II)【解析】(I)解:設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,依題意,得,解得,故,,所以,的通項公式為,的通項公式為;(II),記①則②②①得,,所以.【規(guī)律方法】1.錯位相減法求和的策略(1)如果數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,求數(shù)列{an·bn}的前n項和時,可采用錯位相減法,一般是和式兩邊同乘以等比數(shù)列{bn}的公比,然后作差求解.(2)在寫“Sn”與“qSn”的表達式時應(yīng)特別注意將兩式“錯項對齊”以便下一步準確寫出“Sn-qSn”的表達式.(3)在應(yīng)用錯位相減法求和時,若等比數(shù)列的公比為參數(shù),應(yīng)分公比等于1和不等于1兩種情況求解.2.錯位相減法:如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列的對應(yīng)項之積構(gòu)成的,那么這個數(shù)列的前項和即可用此法來求,如等比數(shù)列的前項和公式就是用此法推導(dǎo)的.若SKIPIF1<0,其中SKIPIF1<0是等差數(shù)列,SKIPIF1<0是公比為SKIPIF1<0等比數(shù)列,令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0兩式錯位相減并整理即得.【變式探究】1.(2020屆山東省六地市部分學(xué)校高三3月線考)數(shù)列滿足:(1)求的通項公式;(2)若數(shù)列滿足,求的前項和.【答案】(1);(2).【解析】(1)令時,時,,滿足所以;(2)由,①②①②得2.(2021·新安縣第一高級中學(xué)高三其他模擬(理))已知數(shù)列SKIPIF1<0前SKIPIF1<0項和是SKIPIF1<0,且SKIPIF1<0.(1)設(shè)SKIPIF1<0,證明:數(shù)列SKIPIF1<0是等比數(shù)列;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)證明見解析;(2)SKIPIF1<0.【解析】(1)由SKIPIF1<0可求得SKIPIF1<0的值,令SKIPIF1<0,由SKIPIF1<0可得出SKIPIF1<0,整理可得SKIPIF1<0,利用定義可證明出數(shù)列SKIPIF1<0是等比數(shù)列,確定該數(shù)列的首項和公比,可求得數(shù)列SKIPIF1<0的通項公式;(2)求得SKIPIF1<0,然后利用錯位相減法可求得SKIPIF1<0.【詳解】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0時,由SKIPIF1<0,可得SKIPIF1<0,上述兩式作差得SKIPIF1<0,即SKIPIF1<0,所以,SKIPIF1<0,且SKIPIF1<0,所以,數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,以SKIPIF1<0為公比的等比數(shù)列,所以,SKIPIF1<0;(2)SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,兩式作差得SKIPIF1<0,因此,SKIPIF1<0.考點三:裂項相消法求和【典例5】(2021·全國高三其他模擬(理))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)由SKIPIF1<0,變形為SKIPIF1<0,利用等比數(shù)列的通項公式可得SKIPIF1<0,再利用SKIPIF1<0與SKIPIF1<0的關(guān)系即可得出答案;(2)將SKIPIF1<0裂項為SKIPIF1<0,裂項相消求和即可.【詳解】解:(1)因為SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0是以4為首項,2為公比的等比數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時也成立,所以SKIPIF1<0.(2)令SKIPIF1<0SKIPIF1<0,所以數(shù)列SKIPIF1<0前SKIPIF1<0項和SKIPIF1<0SKIPIF1<0.【典例6】(2020·山東滕州市第一中學(xué)高三3月模擬)已知等差數(shù)列的公差,其前項和為,若,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)若,證明:.【答案】(1);(2)證明見解析.【解析】(Ⅰ)∵數(shù)列為等差數(shù)列,且,.∵成等比數(shù)列,∴,即,又∴,∴,∴.(2)證明:由(1)得,∴.∴.∴.【典例7】(2019·浙江高考真題)設(shè)等差數(shù)列的前項和為,,,數(shù)列滿足:對每成等比數(shù)列.(1)求數(shù)列的通項公式;(2)記證明:【答案】(1),;(2)證明見解析.【解析】(1)由題意可得:,解得:,則數(shù)列的通項公式為.其前n項和.則成等比數(shù)列,即:,據(jù)此有:,故.(2)結(jié)合(1)中的通項公式可得:,則.【總結(jié)提升】1.裂項相消法求和的實質(zhì)和關(guān)鍵(1)裂項原則:一般是前邊裂幾項,后邊就裂幾項,直到發(fā)現(xiàn)被消去項的規(guī)律為止.(2)消項規(guī)律:消項后前邊剩幾項,后邊就剩幾項,前邊剩第幾項,后邊就剩倒數(shù)第幾項.2.常見“裂項”方法:【變式探究】1.(2021·四川眉山市·仁壽一中高三其他模擬(文))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且滿足SKIPIF1<0.(1)求證:SKIPIF1<0為等比數(shù)列(2)設(shè)SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,求證:SKIPIF1<0【答案】(1)證明見解析;(2)證明見解析.【解析】(1)利用SKIPIF1<0可得SKIPIF1<0,再利用等比數(shù)列定義可得;(2)由裂項相消法求得SKIPIF1<0即可證明.【詳解】(1)當(dāng)n=1時,SKIPIF1<0,∴SKIPIF1<0.當(dāng)SKIPIF1<0時,∵SKIPIF1<0,∴SKIPIF1<0,兩式相減得SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0是以SKIPIF1<0為首項,2為公比的等比數(shù)列.(2)由(1)知SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0.2.(2018·天津高考真題(理))(2018年天津卷理)設(shè){an}是等比數(shù)列,公比大于0,其前n項和為Sn(n∈N?),{b(I)求{an}(II)設(shè)數(shù)列{Sn}(i)求Tn(ii)證明k=1n【答案】(Ⅰ)an=2n?1,bn=n;(Ⅱ)(【解析】(Ⅰ)設(shè)等比數(shù)列{an}的公比為可得q2?q?2=0.因為q>0,可得q=2,故設(shè)等差數(shù)列{bn}的公差為d,由由a5=b從而b1=1,d=1,故所以數(shù)列{an}數(shù)列{bn(II)(i)由(I),有Sn故Tn(ii)因為(T所以k=1n【總結(jié)提升】1.裂項相消法:把數(shù)列的通項拆成兩項之差,即數(shù)列的每一項都可按此法拆成兩項之差,在求和時一些正負項相互抵消,于是前SKIPIF1<0項的和變成首尾若干少數(shù)項之和,這一求和方法稱為裂項相消法.適用于類似SKIPIF1<0(其中SKIPIF1<0是各項不為零的等差數(shù)列,SKIPIF1<0為常數(shù))的數(shù)列、部分無理數(shù)列等.用裂項相消法求和,2.需要掌握一些常見的裂項方法:(1)SKIPIF1<0,特別地當(dāng)SKIPIF1<0時,SKIPIF1<0;(2),特別地當(dāng)SKIPIF1<0時,;(3)(4)(5)專題7.4數(shù)列求和練基礎(chǔ)練基礎(chǔ)1.(2021·全國高三其他模擬)設(shè)數(shù)列{an}的前n項和為Sn,若SKIPIF1<0,則S99=()A.7 B.8 C.9 D.10【答案】C【解析】采用裂項相消法求數(shù)列的和【詳解】因為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故選C.2.(2017·全國高考真題(理))(2017新課標(biāo)全國II理科)我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈()A.1盞B.3盞C.5盞D.9盞【答案】B【解析】設(shè)塔頂?shù)腶1盞燈,由題意{an}是公比為2的等比數(shù)列,∴S7=a1解得a1=3.故選:B.3.(2019·全國高考真題(文))已知各項均為正數(shù)的等比數(shù)列的前4項和為15,且,則()A.16 B.8 C.4 D.2【答案】C【解析】設(shè)正數(shù)的等比數(shù)列{an}的公比為,則,解得,,故選C.4.(2020·山東曲阜一中高三3月月考)【多選題】在《增刪算法統(tǒng)宗》中有這樣一則故事:“三百七十八里關(guān),初行健步不為難;次日腳痛減一半,如此六日過其關(guān).”則下列說法正確的是()A.此人第二天走了九十六里路 B.此人第三天走的路程站全程的SKIPIF1<0C.此人第一天走的路程比后五天走的路程多六里 D.此人后三天共走了42里路【答案】ACD【解析】設(shè)此人第SKIPIF1<0天走SKIPIF1<0里路,則數(shù)列SKIPIF1<0是首項為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,因為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,對于A,由于SKIPIF1<0,所以此人第二天走了九十六里路,所以A正確;對于B,由于SKIPIF1<0SKIPIF1<0,所以B不正確;對于C,由于SKIPIF1<0,所以此人第一天走的路程比后五天走的路程多六里,所以C正確;對于D,由于SKIPIF1<0,所以D正確,故選:ACD5.(2019·全國高考真題(文))記Sn為等比數(shù)列{an}的前n項和.若,則S4=___________.【答案】.【解析】設(shè)等比數(shù)列的公比為,由已知,即解得,所以.6.(2021·四川成都市·石室中學(xué)高三三模)記SKIPIF1<0為遞增等比數(shù)列SKIPIF1<0的前n項和,若SKIPIF1<0,SKIPIF1<0則SKIPIF1<0的值為______.【答案】1023【解析】首先利用已知條件求得等比數(shù)列的公比和首項,最后根據(jù)等比數(shù)列的前n項和公式求出SKIPIF1<0即可.【詳解】因為數(shù)列SKIPIF1<0為等比數(shù)列,所以SKIPIF1<0,解得SKIPIF1<0,設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,因為等比數(shù)列SKIPIF1<0是遞增數(shù)列,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故答案為:10237.(2021·甘肅白銀市·高三其他模擬(理))已知正項等比數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0中不超過2021的所有項的和為___________.【答案】2046【解析】先根據(jù)題意列方程組,求出通項公式,再判斷不超過2021的所有項的和為前10項的和,直接利用等比數(shù)列的前n項和公式求和即可.【詳解】設(shè)正項等比數(shù)列SKIPIF1<0的公比為q,SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0,解得:SKIPIF1<0.所以數(shù)列SKIPIF1<0中不超過2021的所有項的和為:SKIPIF1<0.故答案為:2046.8.(2021·福建高三其他模擬)記SKIPIF1<0為等比數(shù)列SKIPIF1<0的前SKIPIF1<0項和,已知SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0;(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項和.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)由已知SKIPIF1<0,令SKIPIF1<0,求出SKIPIF1<0,再令SKIPIF1<0,SKIPIF1<0,求出等比數(shù)列的公比,由SKIPIF1<0,即可求解;(2)由(1)求出SKIPIF1<0通項公式,可得數(shù)列SKIPIF1<0為等比數(shù)列,根據(jù)等比數(shù)列的前SKIPIF1<0項和公式,即可得出結(jié)論.【詳解】(1)令SKIPIF1<0,則由SKIPIF1<0可得SKIPIF1<0,當(dāng)SKIPIF1<0時,由SKIPIF1<0可得SKIPIF1<0,兩式相減,可得SKIPIF1<0,即SKIPIF1<0,依題意,SKIPIF1<0為等比數(shù)列,故SKIPIF1<0;(2)由(1)可知SKIPIF1<0為首項等于1,公比等于2的等比數(shù)列,故SKIPIF1<0;故SKIPIF1<0為首項等于SKIPIF1<0,公比等于SKIPIF1<0的等比數(shù)列,故SKIPIF1<0.故SKIPIF1<0.9.(2021·遼寧高三其他模擬)已知SKIPIF1<0為等差數(shù)列,SKIPIF1<0為等比數(shù)列,且滿足SKIPIF1<0.(1)求SKIPIF1<0和SKIPIF1<0的通項公式;(2)對任意的正整數(shù)n,設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項和SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)設(shè)出數(shù)列的公差和公比,結(jié)合條件求出公差和公比,然后寫出通項公式;(2)求出SKIPIF1<0,結(jié)合錯位相減法求和可得數(shù)列SKIPIF1<0的前n項和SKIPIF1<0.【詳解】(1)設(shè)等差數(shù)列SKIPIF1<0的公差為d,等比數(shù)列SKIPIF1<0的公比為q,由SKIPIF1<0,則1+3d=4d,可得d=1,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0,解得q=2,所以SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0,兩式相減,得SKIPIF1<0所以SKIPIF1<0.10.(2021·廣東實驗中學(xué)高三其他模擬)已知數(shù)列{an}中,a1=1,其前n項和Sn,滿足an+1=Sn+1(n∈N*).(1)求Sn;(2)記bn=SKIPIF1<0,求數(shù)列{bn}的前n項和Tn.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)由數(shù)列的遞推式和等比數(shù)列的定義、通項公式,可得所求;(2)求得SKIPIF1<0,由數(shù)列的裂項相消求和,化簡即可得到答案.【詳解】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,在SKIPIF1<0中,令SKIPIF1<0,可得SKIPIF1<0因為SKIPIF1<0,所以SKIPIF1<0故SKIPIF1<0是首項為1,公比為2的等比數(shù)列,其通項公式為SKIPIF1<0,所以SKIPIF1<0.(2)因為SKIPIF1<0SKIPIF1<0所以SKIPIF1<0SKIPIF1<0故SKIPIF1<0SKIPIF1<0練提升TIDHNEG練提升TIDHNEG1.【多選題】(2021·吉林松原市·高三月考)在數(shù)學(xué)課堂上,為提高學(xué)生探究分析問題的能力,教師引導(dǎo)學(xué)生構(gòu)造新數(shù)列:現(xiàn)有一個每項都為1的常數(shù)列,在此數(shù)列的第SKIPIF1<0項與第SKIPIF1<0項之間插入首項為2,公比為2,的等比數(shù)列的前SKIPIF1<0項,從而形成新的數(shù)列SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【解析】根據(jù)題意求出n,然后即可求出SKIPIF1<0,再利用錯位相減法求出新數(shù)列的和.【詳解】設(shè)SKIPIF1<0介于第SKIPIF1<0個1與第SKIPIF1<0個1之間或者為這兩個1當(dāng)中的一個,則從新數(shù)列的第1個1到第SKIPIF1<0個1一共有SKIPIF1<0項,從新數(shù)列的第1個1到第SKIPIF1<0個1一共有SKIPIF1<0項,所以SKIPIF1<0,解得SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,故A正確,B錯誤;SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故D正確,C錯誤,故選:AD.2.【多選題】(2021·河北高三其他模擬)數(shù)學(xué)中有各式各樣富含詩意的曲線,螺旋線就是其中比較特別的一類.螺旋線這個名詞來源于希臘文,它的原意是“旋卷”或“纏卷”.小明對螺旋線有著濃厚的興趣,連接嵌套的各個正方形的頂點就得到了近似于螺旋線的美麗圖案,其具體作法是:在邊長為1的正方形SKIPIF1<0中,作它的內(nèi)接正方形SKIPIF1<0,且使得SKIPIF1<0;再作正方形SKIPIF1<0的內(nèi)接正方形SKIPIF1<0,且使得SKIPIF1<0;類似地,依次進行下去,就形成了陰影部分的圖案,如圖所示.設(shè)第n個正方形的邊長為SKIPIF1<0(其中第1個正方形SKIPIF1<0的邊長為SKIPIF1<0,第2個正方形SKIPIF1<0的邊長為SKIPIF1<0,…),第n個直角三角形(陰影部分)的面積為SKIPIF1<0(其中第1個直角三角形SKIPIF1<0的面積為SKIPIF1<0,第2個直角三角形SKIPIF1<0的面積為SKIPIF1<0,…),則()A.?dāng)?shù)列SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列 B.SKIPIF1<0C.?dāng)?shù)列SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列 D.?dāng)?shù)列SKIPIF1<0的前n項和SKIPIF1<0【答案】BD【解析】先得到SKIPIF1<0,即SKIPIF1<0可判斷A,再求出SKIPIF1<0,可判斷B與C,最后求出SKIPIF1<0,可判斷D.【詳解】如圖:由圖知SKIPIF1<0,對于A:SKIPIF1<0,數(shù)列SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列,故A不正確;對于BC:因為SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,故B正確,C不正確;對于D:因為SKIPIF1<0,故D正確,故選:BD.3.(2022·河南高三月考(文))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)由SKIPIF1<0,化簡得到SKIPIF1<0,結(jié)合等比數(shù)列的通項公式,即可求解;(2)由(1)知SKIPIF1<0,單調(diào)SKIPIF1<0,結(jié)合等差數(shù)列的求和公式和乘公比錯位相減法,即可求解.【詳解】(1)由題意,數(shù)列SKIPIF1<0滿足SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,又因為SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即數(shù)列SKIPIF1<0的通項公式SKIPIF1<0.(2)由(1)知SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0.4.(2021·全國高三其他模擬(理))已知等差數(shù)列SKIPIF1<0滿足SKIPIF1<0,正項等比數(shù)列SKIPIF1<0滿足首項為1,前3項和為7.(1)求SKIPIF1<0與SKIPIF1<0的通項公式;(2)求SKIPIF1<0的前n項和SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)設(shè)等差數(shù)列SKIPIF1<0的公差為d,運用等差數(shù)列的通項公式,可得首項和公差,可得SKIPIF1<0;設(shè)正項等比數(shù)列SKIPIF1<0的公比為q,q>0,由等比數(shù)列的通項公式,解方程可得q,進而得到SKIPIF1<0;(2)由(1)可得SKIPIF1<0,利用錯位相減法求和,即可得答案.【詳解】解:(1)設(shè)等差數(shù)列SKIPIF1<0的公差為d,由SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0;設(shè)正項等比數(shù)列SKIPIF1<0的公比為q,q>0,由首項為1,前3項和為7,可得SKIPIF1<0,解得q=2,則SKIPIF1<0;(2)由(1)可得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,兩式相減可得SKIPIF1<0=SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.5.(2021·黑龍江哈爾濱市·哈九中高三其他模擬(理))已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)設(shè)SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,求SKIPIF1<0最小值.【答案】(1)SKIPIF1<0;(2)最小值為SKIPIF1<0.【解析】(1)由已知條件得到SKIPIF1<0為等比數(shù)列,即可得到SKIPIF1<0通項;(2)錯位相減求出SKIPIF1<0,根據(jù)單調(diào)性求出SKIPIF1<0最小值.【詳解】解:(1)由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0是以2為公比的等比數(shù)列,記公比為SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,兩式相減,得SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0單調(diào)遞增,SKIPIF1<0時,SKIPIF1<0最小,最小值為SKIPIF1<0.6.(2021·四川省綿陽南山中學(xué)高三其他模擬(理))已知SKIPIF1<0是等比數(shù)列SKIPIF1<0的前SKIPIF1<0項和,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)若存在正整數(shù)SKIPIF1<0,使得SKIPIF1<0,求SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0;(2)11.【解析】(1)設(shè)數(shù)列SKIPIF1<0的公比為SKIPIF1<0,根據(jù)條件列出SKIPIF1<0,求得首項和公比,從而求得通項公式;(2)由(1)求得SKIPIF1<0,分奇偶求解SKIPIF1<0即可求得滿足條件的最小n值.【詳解】(1)設(shè)數(shù)列SKIPIF1<0的公比為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.由題意得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0.(2)由(1)有SKIPIF1<0.由SKIPIF1<0得,SKIPIF1<0,即SKIPIF1<0.當(dāng)SKIPIF1<0為偶數(shù)時,SKIPIF1<0,上式不成立;-當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0.綜上,SKIPIF1<0的最小值為11.7.(2021·全國高三其他模擬)已知數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,SKIPIF1<0為公比的等比數(shù)列.(1)求數(shù)列SKIPIF1<0的通項公式;(2)在數(shù)列SKIPIF1<0中,去掉第SKIPIF1<0項,第SKIPIF1<0項,…,第SKIPIF1<0項(SKIPIF1<0為正整數(shù))得到的數(shù)列記為SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)由等比數(shù)列通項公式可求得SKIPIF1<0,進而得到SKIPIF1<0;(2)設(shè)SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,根據(jù)SKIPIF1<0三者之間的關(guān)系可整理得到當(dāng)SKIPIF1<0為偶數(shù)時,SKIPIF1<0,當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0,利用等差數(shù)列求和公式可整理求得結(jié)果.【詳解】(1)由題意得:SKIPIF1<0,SKIPIF1<0;(2)設(shè)SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0…①,SKIPIF1<0,SKIPIF1<0…②,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0…③,由①知:當(dāng)SKIPIF1<0時,SKIPIF1<0;由③知:當(dāng)SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0當(dāng)SKIPIF1<0為偶數(shù)時,SKIPIF1<0,SKIPIF1<0;由②知:當(dāng)SKIPIF1<0時,SKIPIF1<0,即當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0;SKIPIF1<0SKIPIF1<0;綜上所述:SKIPIF1<0.8.(2020屆浙江省溫麗聯(lián)盟高三第一次聯(lián)考)設(shè)SKIPIF1<0是等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和,其中SKIPIF1<0,且SKIPIF1<0.(Ⅰ)求SKIPIF1<0的值,并求出數(shù)列SKIPIF1<0的通項公式;(Ⅱ)設(shè)SKIPIF1<0,求證:SKIPIF1<0.【答案】(Ⅰ)SKIPIF1<0,SKIPIF1<0;(Ⅱ)證明見解析.【解析】(Ⅰ)解:令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,∵SKIPIF1<0為等差數(shù)列,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0;(Ⅱ)證:由題意得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0為遞增數(shù)列,即SKIPIF1<0,∴SKIPIF1<0成立.9.(2019·浙江高考模擬)已知數(shù)列中,,(1)令,求證:數(shù)列是等比數(shù)列;(2)令,當(dāng)取得最大值時,求的值.【答案】(I)見解析(2)最大,即【解析】(1)兩式相減,得∴即:∴數(shù)列是以2為首項,2為公比的等比數(shù)列(2)由(1)可知,即也滿足上式令,則,∴最大,即10.(2020屆山東濟寧市兗州區(qū)高三網(wǎng)絡(luò)模擬考)在①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0,這三個條件中任選一個,補充在下面問題中,并解答.已知等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,前n項和為SKIPIF1<0,等比數(shù)列SKIPIF1<0的公比為q,且SKIPIF1<0,____________.(1)求數(shù)列SKIPIF1<0,SKIPIF1<0的通項公式.(2)記SKIPIF1<0,求數(shù)列SKIPIF1<0,的前n項和SKIPIF1<0.注:如果選擇多個條件分別解答,按第一個解答計分.【答案】(1)見解析(2)見解析【解析】方案一:選條件①(1)SKIPIF1<0SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0(舍去)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0方案二:選條件②(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0(舍去)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0方案三:選條件③SKIPIF1<0SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0(舍去)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0練真題TIDHNEG練真題TIDHNEG1.(2020·全國高考真題(理))數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0()A.2 B.3 C.4 D.5【答案】C【解析】在等式SKIPIF1<0中,令SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,所以,數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,以SKIPIF1<0為公比的等比數(shù)列,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故選:C.2.(2021·浙江高考真題)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0.記數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】顯然可知,SKIPIF1<0,利用倒數(shù)法得到SKIPIF1<0,再放縮可得SKIPIF1<0,由累加法可得SKIPIF1<0,進而由SKIPIF1<0局部放縮可得SKIPIF1<0,然后利用累乘法求得SKIPIF1<0,最后根據(jù)裂項相消法即可得到SKIPIF1<0,從而得解.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.由SKIPIF1<0SKIPIF1<0,即SKIPIF1<0根據(jù)累加法可得,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,SKIPIF1<0SKIPIF1<0,由累乘法可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,由裂項求和法得:所以SKIPIF1<0,即SKIPIF1<0.故選:A.3.(2020·全國高考真題(理))設(shè)SKIPIF1<0是公比不為1的等比數(shù)列,SKIPIF1<0為SKIPIF1<0,SKIPIF1<0的等差中項.(1)求SKIPIF1<0的公比;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)設(shè)SKIPIF1<0的公比為SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的等差中項,SKIPIF1<0,SKIPIF1<0;(2)設(shè)SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,①SKIPIF1<0,②①SKIPIF1<0②得,SKIPIF1<0SKIPIF1<0,SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論