2021-2022學年湖南省岳陽市岳陽縣達標名校中考試題猜想數(shù)學試卷含解析_第1頁
2021-2022學年湖南省岳陽市岳陽縣達標名校中考試題猜想數(shù)學試卷含解析_第2頁
2021-2022學年湖南省岳陽市岳陽縣達標名校中考試題猜想數(shù)學試卷含解析_第3頁
免費預覽已結束,剩余17頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知關于x的方程恰有一個實根,則滿足條件的實數(shù)a的值的個數(shù)為()A.1 B.2 C.3 D.42.為確保信息安全,信息需加密傳輸,發(fā)送方將明文加密后傳輸給接收方,接收方收到密文后解密還原為明文,已知某種加密規(guī)則為,明文a,b對應的密文為a+2b,2a-b,例如:明文1,2對應的密文是5,0,當接收方收到的密文是1,7時,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,33.某校九年級共有1、2、3、4四個班,現(xiàn)從這四個班中隨機抽取兩個班進行一場籃球比賽,則恰好抽到1班和2班的概率是()A.18 B.16 C.34.已知點、都在反比例函數(shù)的圖象上,則下列關系式一定正確的是()A. B. C. D.5.蘋果的單價為a元/千克,香蕉的單價為b元/千克,買2千克蘋果和3千克香蕉共需()A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元6.如圖,點D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一條弦,則cos∠OBD=()A. B. C. D.7.如圖,四邊形ABCD內接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,則∠BDC的度數(shù)為()A.100° B.105° C.110° D.115°8.為了增強學生體質,學校發(fā)起評選“健步達人”活動,小明用計步器記錄自己一個月(30天)每天走的步數(shù),并繪制成如下統(tǒng)計表:步數(shù)(萬步)1.01.3天數(shù)335712在每天所走的步數(shù)這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是()A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.49.如圖,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分別過點B,C作BE⊥AG于點E,CF⊥AG于點F,則AE-GF的值為()A.1 B.2 C.32 D.10.如圖,AD∥BE∥CF,直線l1,l2與這三條平行線分別交于點A,B,C和點D,E,F(xiàn).已知AB=1,BC=3,DE=2,則EF的長為()A.4 B..5 C.6 D.811.將拋物線y=﹣(x+1)2+4平移,使平移后所得拋物線經過原點,那么平移的過程為()A.向下平移3個單位 B.向上平移3個單位C.向左平移4個單位 D.向右平移4個單位12.安徽省在一次精準扶貧工作中,共投入資金4670000元,將4670000用科學記數(shù)法表示為()A.4.67×107 B.4.67×106 C.46.7×105 D.0.467×107二、填空題:(本大題共6個小題,每小題4分,共24分.)13.出售某種手工藝品,若每個獲利x元,一天可售出個,則當x=_________元,一天出售該種手工藝品的總利潤y最大.14.一次函數(shù)與的圖象如圖,則的解集是__.15.在平面直角坐標系的第一象限內,邊長為1的正方形ABCD的邊均平行于坐標軸,A點的坐標為(a,a),如圖,若曲線y=(x>0)與此正方形的邊有交點,則a的取值范圍是_______.16.不解方程,判斷方程2x2+3x﹣2=0的根的情況是_____.17.某航空公司規(guī)定,旅客乘機所攜帶行李的質量x(kg)與其運費y(元)由如圖所示的一次函數(shù)圖象確定,則旅客可攜帶的免費行李的最大質量為kg18.若有意義,則x的取值范圍是.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知A(3,0),B(0,﹣1),連接AB,過B點作AB的垂線段BC,使BA=BC,連接AC.如圖1,求C點坐標;如圖2,若P點從A點出發(fā)沿x軸向左平移,連接BP,作等腰直角△BPQ,連接CQ,當點P在線段OA上,求證:PA=CQ;在(2)的條件下若C、P,Q三點共線,求此時∠APB的度數(shù)及P點坐標.20.(6分)已知關于x的一元二次方程kx2﹣6x+1=0有兩個不相等的實數(shù)根.(1)求實數(shù)k的取值范圍;(2)寫出滿足條件的k的最大整數(shù)值,并求此時方程的根.21.(6分)先化簡,再求值:(﹣2)÷,其中x滿足x2﹣x﹣4=022.(8分)為了掌握我市中考模擬數(shù)學試題的命題質量與難度系數(shù),命題教師赴我市某地選取一個水平相當?shù)某跞昙夁M行調研,命題教師將隨機抽取的部分學生成績(得分為整數(shù),滿分為160分)分為5組:第一組85~100;第二組100~115;第三組115~130;第四組130~145;第五組145~160,統(tǒng)計后得到如圖1和如圖2所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖,觀察圖形的信息,回答下列問題:(1)本次調查共隨機抽取了該年級多少名學生?并將頻數(shù)分布直方圖補充完整;(2)若將得分轉化為等級,規(guī)定:得分低于100分評為“D”,100~130分評為“C”,130~145分評為“B”,145~160分評為“A”,那么該年級1600名學生中,考試成績評為“B”的學生大約有多少名?(3)如果第一組有兩名女生和兩名男生,第五組只有一名是男生,針對考試成績情況,命題教師決定從第一組、第五組分別隨機選出一名同學談談做題的感想,請你用列表或畫樹狀圖的方法求出所選兩名學生剛好是一名女生和一名男生的概率.23.(8分)在同一時刻兩根木竿在太陽光下的影子如圖所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墻上的影子MN=1.1m,求木竿PQ的長度.24.(10分)學了統(tǒng)計知識后,小紅就本班同學上學“喜歡的出行方式”進行了一次調查,圖(1)和圖(2)是她根據(jù)采集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息解答以下問題:(1)補全條形統(tǒng)計圖,并計算出“騎車”部分所對應的圓心角的度數(shù).(2)若由3名“喜歡乘車”的學生,1名“喜歡騎車”的學生組隊參加一項活動,現(xiàn)欲從中選出2人擔任組長(不分正副),求出2人都是“喜歡乘車”的學生的概率,(要求列表或畫樹狀圖)25.(10分)已知關于x的方程.當該方程的一個根為1時,求a的值及該方程的另一根;求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.26.(12分)許昌芙蓉湖位于許昌市水系建設總體規(guī)劃中部,上游接納清泥河來水,下游為鹿鳴湖等水系供水,承擔著承上啟下的重要作用,是利用有限的水資源、形成良好的水生態(tài)環(huán)境打造生態(tài)宜居城市的重要部分.某校課外興趣小組想測量位于芙蓉湖兩端的A,B兩點之間的距離他沿著與直線AB平行的道路EF行走,走到點C處,測得∠ACF=45°,再向前走300米到點D處,測得∠BDF=60°.若直線AB與EF之間的距離為200米,求A,B兩點之間的距離(結果保留一位小數(shù))27.(12分)太原雙塔寺又名永祚寺,是國家級文物保護單位,由于雙塔(舍利塔、文峰塔)聳立,被人們稱為“文筆雙塔”,是太原的標志性建筑之一,某校社會實踐小組為了測量舍利塔的高度,在地面上的C處垂直于地面豎立了高度為2米的標桿CD,這時地面上的點E,標桿的頂端點D,舍利塔的塔尖點B正好在同一直線上,測得EC=4米,將標桿CD向后平移到點C處,這時地面上的點F,標桿的頂端點H,舍利塔的塔尖點B正好在同一直線上(點F,點G,點E,點C與塔底處的點A在同一直線上),這時測得FG=6米,GC=53米.請你根據(jù)以上數(shù)據(jù),計算舍利塔的高度AB.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

先將原方程變形,轉化為整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一個實數(shù)根,因此,方程①的根有兩種情況:(1)方程①有兩個相等的實數(shù)根,此二等根使x(x-2)≠1;(2)方程①有兩個不等的實數(shù)根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.針對每一種情況,分別求出a的值及對應的原方程的根.【詳解】去分母,將原方程兩邊同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情況有兩種:(1)方程①有兩個相等的實數(shù)根,即△=9﹣3×2(3﹣a)=1.解得a=.當a=時,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.(2)方程①有兩個不等的實數(shù)根,而其中一根使原方程分母為零,即方程①有一個根為1或2.(i)當x=1時,代入①式得3﹣a=1,即a=3.當a=3時,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即這時方程①的另一個根是x=1.4.它不使分母為零,確是原方程的唯一根.(ii)當x=2時,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.當a=5時,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣.x1是增根,故x=﹣為方程的唯一實根;因此,若原分式方程只有一個實數(shù)根時,所求的a的值分別是,3,5共3個.故選C.【點睛】考查了分式方程的解法及增根問題.由于原分式方程去分母后,得到一個含有字母的一元二次方程,所以要分情況進行討論.理解分式方程產生增根的原因及一元二次方程解的情況從而正確進行分類是解題的關鍵.2、A【解析】

根據(jù)題意可得方程組,再解方程組即可.【詳解】由題意得:,解得:,故選A.3、B【解析】畫樹狀圖展示所有12種等可能的結果數(shù),再找出恰好抽到1班和2班的結果數(shù),然后根據(jù)概率公式求解.解:畫樹狀圖為:共有12種等可能的結果數(shù),其中恰好抽到1班和2班的結果數(shù)為2,所以恰好抽到1班和2班的概率=212故選B.4、A【解析】分析:根據(jù)反比例函數(shù)的性質,可得答案.詳解:由題意,得k=-3,圖象位于第二象限,或第四象限,在每一象限內,y隨x的增大而增大,∵3<6,∴x1<x2<0,故選A.點睛:本題考查了反比例函數(shù),利用反比例函數(shù)的性質是解題關鍵.5、C【解析】

用單價乘數(shù)量得出買2千克蘋果和3千克香蕉的總價,再進一步相加即可.【詳解】買單價為a元的蘋果2千克用去2a元,買單價為b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故選C.【點睛】本題主要考查列代數(shù)式,總價=單價乘數(shù)量.6、C【解析】

根據(jù)圓的弦的性質,連接DC,計算CD的長,再根據(jù)直角三角形的三角函數(shù)計算即可.【詳解】∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,連接CD,如圖所示:∵∠OBD=∠OCD,∴cos∠OBD=cos∠OCD=.故選:C.【點睛】本題主要三角函數(shù)的計算,結合考查圓性質的計算,關鍵在于利用等量替代原則.7、B【解析】

根據(jù)圓內接四邊形的性質得出∠C的度數(shù),進而利用平行線的性質得出∠ABC的度數(shù),利用角平分線的定義和三角形內角和解答即可.【詳解】∵四邊形ABCD內接于⊙O,∠A=130°,

∴∠C=180°-130°=50°,

∵AD∥BC,

∴∠ABC=180°-∠A=50°,

∵BD平分∠ABC,

∴∠DBC=25°,

∴∠BDC=180°-25°-50°=105°,

故選:B.【點睛】本題考查了圓內接四邊形的性質,關鍵是根據(jù)圓內接四邊形的性質得出∠C的度數(shù).8、B【解析】

在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1.1,得到這組數(shù)據(jù)的眾數(shù);把這組數(shù)據(jù)按照從小到大的順序排列,第15、16個數(shù)的平均數(shù)是中位數(shù).【詳解】在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1.1,即眾數(shù)是1.1.要求一組數(shù)據(jù)的中位數(shù),把這組數(shù)據(jù)按照從小到大的順序排列,第15、16個兩個數(shù)都是1.1,所以中位數(shù)是1.1.故選B.【點睛】本題考查一組數(shù)據(jù)的中位數(shù)和眾數(shù),在求中位數(shù)時,首先要把這列數(shù)字按照從小到大或從的大到小排列,找出中間一個數(shù)字或中間兩個數(shù)字的平均數(shù)即為所求.9、D【解析】

設AE=x,則AB=2x,由矩形的性質得出∠BAD=∠D=90°,CD=AB,證明△ADG是等腰直角三角形,得出AG=2AD=2,同理得出CD=AB=2x,CG=CD-DG=2x-1,CG=2GF,得出GF,即可得出結果.【詳解】設AE=x,

∵四邊形ABCD是矩形,

∴∠BAD=∠D=90°,CD=AB,∵AG平分∠BAD,∴∠DAG=45°,∴△ADG是等腰直角三角形,∴DG=AD=1,∴AG=2AD=2,同理:BE=AE=x,CD=AB=2x,∴CG=CD-DG=2x-1,同理:CG=2GF,∴FG=22∴AE-GF=x-(x-22)=2故選D.【點睛】本題考查了矩形的性質、等腰直角三角形的判定與性質,勾股定理;熟練掌握矩形的性質和等腰直角三角形的性質,并能進行推理計算是解決問題的關鍵.10、C【解析】

解:∵AD∥BE∥CF,根據(jù)平行線分線段成比例定理可得,即,解得EF=6,故選C.11、A【解析】將拋物線平移,使平移后所得拋物線經過原點,若左右平移n個單位得到,則平移后的解析式為:,將(0,0)代入后解得:n=-3或n=1,所以向左平移1個單位或向右平移3個單位后拋物線經過原點;若上下平移m個單位得到,則平移后的解析式為:,將(0,0)代入后解得:m=-3,所以向下平移3個單位后拋物線經過原點,故選A.12、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將4670000用科學記數(shù)法表示為4.67×106,故選B.【點睛】本題考查了科學記數(shù)法—表示較大的數(shù),解題的關鍵是掌握科學記數(shù)法的概念進行解答.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】先根據(jù)題意得出總利潤y與x的函數(shù)關系式,再根據(jù)二次函數(shù)的最值問題進行解答.解:∵出售某種手工藝品,若每個獲利x元,一天可售出(8-x)個,

∴y=(8-x)x,即y=-x2+8x,

∴當x=-=1時,y取得最大值.

故答案為:1.14、【解析】

不等式kx+b-(x+a)>0的解集是一次函數(shù)y1=kx+b在y2=x+a的圖象上方的部分對應的x的取值范圍,據(jù)此即可解答.【詳解】解:不等式的解集是.故答案為:.【點睛】本題考查了一次函數(shù)的圖象與一元一次不等式的關系:從函數(shù)的角度看,就是尋求使一次函數(shù)y=kx+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標所構成的集合.15、【解析】

因為A點的坐標為(a,a),則C(a﹣1,a﹣1),根據(jù)題意只要分別求出當A點或C點在曲線上時a的值即可得到答案.【詳解】解:∵A點的坐標為(a,a),∴C(a﹣1,a﹣1),當C在雙曲線y=時,則a﹣1=,解得a=+1;當A在雙曲線y=時,則a=,解得a=,∴a的取值范圍是≤a≤+1.故答案為≤a≤+1.【點睛】本題主要考查反比例函數(shù)與幾何圖形的綜合問題,解此題的關鍵在于根據(jù)題意找到關鍵點,然后將關鍵點的坐標代入反比例函數(shù)求得確定值即可.16、有兩個不相等的實數(shù)根.【解析】分析:先求一元二次方程的判別式,由△與0的大小關系來判斷方程根的情況.詳解:∵a=2,b=3,c=?2,∴∴一元二次方程有兩個不相等的實數(shù)根.故答案為有兩個不相等的實數(shù)根.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.17、20【解析】設函數(shù)表達式為y=kx+b把(30,300)、(50、900)代入可得:y=30x-600當y=0時x=20所以免費行李的最大質量為20kg18、x≥8【解析】略三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)C(1,-4).(2)證明見解析;(3)∠APB=135°,P(1,0).【解析】

(1)作CH⊥y軸于H,證明△ABO≌△BCH,根據(jù)全等三角形的性質得到BH=OA=3,CH=OB=1,求出OH,得到C點坐標;(2)證明△PBA≌△QBC,根據(jù)全等三角形的性質得到PA=CQ;(3)根據(jù)C、P,Q三點共線,得到∠BQC=135°,根據(jù)全等三角形的性質得到∠BPA=∠BQC=135°,根據(jù)等腰三角形的性質求出OP,得到P點坐標.【詳解】(1)作CH⊥y軸于H,則∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C點坐標為(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,當C、P,Q三點共線時,∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P點坐標為(1,0).【點睛】本題考查的是全等三角形的判定和性質、三角形的外角的性質,掌握全等三角形的判定定理和性質定理是解題的關鍵.20、(1)(2),【解析】【分析】(1)根據(jù)一元二次方程的定義可知k≠0,再根據(jù)方程有兩個不相等的實數(shù)根,可知△>0,從而可得關于k的不等式組,解不等式組即可得;(2)由(1)可寫出滿足條件的k的最大整數(shù)值,代入方程后求解即可得.【詳解】(1)依題意,得,解得且;(2)∵是小于9的最大整數(shù),∴此時的方程為,解得,.【點睛】本題考查了一元二次方程根的判別式、一元二次方程的定義、解一元二次方程等,熟練一元二次方程根的判別式與一元二次方程的根的情況是解題的關鍵.21、1【解析】

首先運用乘法分配律將所求的代數(shù)式去括號,然后再合并化簡,最后整體代入求解.【詳解】解:(﹣2)÷==x2﹣3﹣2x+2=x2﹣2x﹣1,∵x2﹣x﹣4=0,∴x2﹣2x=8,∴原式=8﹣1=1.【點睛】分式混合運算要注意先去括號;分子、分母能因式分解的先因式分解;除法要統(tǒng)一為乘法運算.注意整體代入思想在代數(shù)求值計算中的應用.22、(1)50(2)420(3)P=【解析】試題分析:(1)首先根據(jù)題意得:本次調查共隨機抽取了該年級學生數(shù)為:20÷40%=50(名);則可求得第五組人數(shù)為:50﹣4﹣8﹣20﹣14=4(名);即可補全統(tǒng)計圖;(2)由題意可求得130~145分所占比例,進而求出答案;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與所選兩名學生剛好是一名女生和一名男生的情況,再利用概率公式求解即可求得答案.試題解析:(1)根據(jù)題意得:本次調查共隨機抽取了該年級學生數(shù)為:20÷40%=50(名);則第五組人數(shù)為:50﹣4﹣8﹣20﹣14=4(名);如圖:(2)根據(jù)題意得:考試成績評為“B”的學生大約有×1600=448(名),答:考試成績評為“B”的學生大約有448名;(3)畫樹狀圖得:∵共有16種等可能的結果,所選兩名學生剛好是一名女生和一名男生的有8種情況,∴所選兩名學生剛好是一名女生和一名男生的概率為:=.考點:1、樹狀圖法與列表法求概率的知識,2、直方圖與扇形統(tǒng)計圖的知識視頻23、木竿PQ的長度為3.35米.【解析】

過N點作ND⊥PQ于D,則四邊形DPMN為矩形,根據(jù)矩形的性質得出DP,DN的長,然后根據(jù)同一時刻物高與影長成正比求出QD的長,即可得出PQ的長.試題解析:【詳解】解:過N點作ND⊥PQ于D,則四邊形DPMN為矩形,∴DN=PM=1.8m,DP=MN=1.1m,∴,∴QD==2.25,∴PQ=QD+DP=2.25+1.1=3.35(m).答:木竿PQ的長度為3.35米.【點睛】本題考查了相似三角形的應用,作出輔助線,根據(jù)同一時刻物高與影長成正比列出比例式是解決此題的關鍵.24、(1)補全條形統(tǒng)計圖見解析;“騎車”部分所對應的圓心角的度數(shù)為108°;(2)2人都是“喜歡乘車”的學生的概率為.【解析】

(1)從兩圖中可以看出乘車的有25人,占了50%,即可得共有學生50人;總人數(shù)減乘車的和騎車的人數(shù)就是步行的人數(shù),根據(jù)數(shù)據(jù)補全直方圖即可;要求扇形的度數(shù)就要先求出騎車的占的百分比,然后再求度數(shù);(2)列出從這4人中選兩人的所有等可能結果數(shù),2人都是“喜歡乘車”的學生的情況有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論