版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2023年高考數(shù)學(xué)模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1下圖是民航部門統(tǒng)計(jì)的某年春運(yùn)期間,六個(gè)城市售出的往返機(jī)票的平均價(jià)格(單位元),以及相比于上一年同期價(jià)格變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖,以下敘述不正確的是( )A深圳的變化幅度最小,北京的平均
2、價(jià)格最高B天津的往返機(jī)票平均價(jià)格變化最大C上海和廣州的往返機(jī)票平均價(jià)格基本相當(dāng)D相比于上一年同期,其中四個(gè)城市的往返機(jī)票平均價(jià)格在增加2設(shè),則的大小關(guān)系是( )ABCD3已知函數(shù),若曲線在點(diǎn)處的切線方程為,則實(shí)數(shù)的取值為( )A-2B-1C1D24木匠師傅對(duì)一個(gè)圓錐形木件進(jìn)行加工后得到一個(gè)三視圖如圖所示的新木件,則該木件的體積( ) ABCD5已知i為虛數(shù)單位,則( )ABCD6已知雙曲線的左、右焦點(diǎn)分別為,圓與雙曲線在第一象限內(nèi)的交點(diǎn)為M,若則該雙曲線的離心率為A2B3CD7復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)在( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限8在平行四邊形中,若則( )ABC
3、D9在展開式中的常數(shù)項(xiàng)為A1B2C3D710已知七人排成一排拍照,其中甲、乙、丙三人兩兩不相鄰,甲、丁兩人必須相鄰,則滿足要求的排隊(duì)方法數(shù)為( ).A432B576C696D96011設(shè)等比數(shù)列的前項(xiàng)和為,則“”是“”的( )A充分不必要B必要不充分C充要D既不充分也不必要12的展開式中的系數(shù)為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13在ABC中,a3,B2A,則cosA_14將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則函數(shù)的最大值為_.15不等式對(duì)于定義域內(nèi)的任意恒成立,則的取值范圍為_.16已知,滿足約束條件則的最大值為_.三、解答題:共70分。解答應(yīng)寫出文字
4、說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知函數(shù).(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當(dāng)時(shí),證明:.18(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為(),將曲線向左平移2個(gè)單位長(zhǎng)度得到曲線.(1)求曲線的普通方程和極坐標(biāo)方程;(2)設(shè)直線與曲線交于兩點(diǎn),求的取值范圍.19(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)把曲線向下平移個(gè)單位,然后各點(diǎn)橫坐標(biāo)變?yōu)樵瓉?lái)的倍得到曲線(縱坐標(biāo)不變),設(shè)點(diǎn)是曲線上的一
5、個(gè)動(dòng)點(diǎn),求它到直線的距離的最小值.20(12分)已知矩陣的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.21(12分)已知橢圓:()的左、右焦點(diǎn)分別為和,右頂點(diǎn)為,且,短軸長(zhǎng)為.(1)求橢圓的方程;(2)若過(guò)點(diǎn)作垂直軸的直線,點(diǎn)為直線上縱坐標(biāo)不為零的任意一點(diǎn),過(guò)作的垂線交橢圓于點(diǎn)和,當(dāng)時(shí),求此時(shí)四邊形的面積.22(10分)某商場(chǎng)為改進(jìn)服務(wù)質(zhì)量,在進(jìn)場(chǎng)購(gòu)物的顧客中隨機(jī)抽取了人進(jìn)行問(wèn)卷調(diào)查調(diào)查后,就顧客“購(gòu)物體驗(yàn)”的滿意度統(tǒng)計(jì)如下:滿意不滿意男女是否有的把握認(rèn)為顧客購(gòu)物體驗(yàn)的滿意度與性別有關(guān)?若在購(gòu)物體驗(yàn)滿意的問(wèn)卷顧客中按照性別分層抽取了人發(fā)放價(jià)值元的購(gòu)物券若在獲得了元購(gòu)物券的人中隨機(jī)抽取
6、人贈(zèng)其紀(jì)念品,求獲得紀(jì)念品的人中僅有人是女顧客的概率附表及公式:參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】根據(jù)條形圖可折線圖所包含的數(shù)據(jù)對(duì)選項(xiàng)逐一分析,由此得出敘述不正確的選項(xiàng).【詳解】對(duì)于A選項(xiàng),根據(jù)折線圖可知深圳的變化幅度最小,根據(jù)條形圖可知北京的平均價(jià)格最高,所以A選項(xiàng)敘述正確.對(duì)于B選項(xiàng),根據(jù)折線圖可知天津的往返機(jī)票平均價(jià)格變化最大,所以B選項(xiàng)敘述正確.對(duì)于C選項(xiàng),根據(jù)條形圖可知上海和廣州的往返機(jī)票平均價(jià)格基本相當(dāng),所以C選項(xiàng)敘述正確.對(duì)于D選項(xiàng),根據(jù)折線圖可知相比于上一年同期,除了深圳外,另外五個(gè)城市的往
7、返機(jī)票平均價(jià)格在增加,故D選項(xiàng)敘述錯(cuò)誤.故選:D【點(diǎn)睛】本小題主要考查根據(jù)條形圖和折線圖進(jìn)行數(shù)據(jù)分析,屬于基礎(chǔ)題.2A【解析】選取中間值和,利用對(duì)數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因?yàn)閷?duì)數(shù)函數(shù)在上單調(diào)遞增,所以,因?yàn)閷?duì)數(shù)函數(shù)在上單調(diào)遞減,所以,因?yàn)橹笖?shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【點(diǎn)睛】本題考查利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識(shí)的綜合運(yùn)用能力;選取合適的中間值是求解本題的關(guān)鍵;屬于中檔題、??碱}型.3B【解析】求出函數(shù)的導(dǎo)數(shù),利用切線方程通過(guò)f(0),求解即可;【詳解】f (x)的定義域?yàn)椋?,+),因?yàn)閒(x)a,曲線yf(x)在點(diǎn)(0,
8、f(0)處的切線方程為y2x,可得1a2,解得a1,故選:B【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計(jì)算能力4C【解析】由三視圖知幾何體是一個(gè)從圓錐中截出來(lái)的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120,底面剩余部分的面積為,故幾何體的體積為:.故選C.【點(diǎn)睛】本題考查了三視圖還原幾何體及體積求解問(wèn)題,考查了學(xué)生空間想象,數(shù)學(xué)運(yùn)算能力,難度一般.5A【解析】根據(jù)復(fù)數(shù)乘除運(yùn)算法則,即可求解.【詳解】.故選:A.【點(diǎn)睛】本題考查
9、復(fù)數(shù)代數(shù)運(yùn)算,屬于基礎(chǔ)題題.6D【解析】本題首先可以通過(guò)題意畫出圖像并過(guò)點(diǎn)作垂線交于點(diǎn),然后通過(guò)圓與雙曲線的相關(guān)性質(zhì)判斷出三角形的形狀并求出高的長(zhǎng)度,的長(zhǎng)度即點(diǎn)縱坐標(biāo),然后將點(diǎn)縱坐標(biāo)帶入圓的方程即可得出點(diǎn)坐標(biāo),最后將點(diǎn)坐標(biāo)帶入雙曲線方程即可得出結(jié)果。【詳解】根據(jù)題意可畫出以上圖像,過(guò)點(diǎn)作垂線并交于點(diǎn),因?yàn)?,在雙曲線上,所以根據(jù)雙曲線性質(zhì)可知,即,因?yàn)閳A的半徑為,是圓的半徑,所以,因?yàn)?,所以,三角形是直角三角形,因?yàn)?,所以,即點(diǎn)縱坐標(biāo)為,將點(diǎn)縱坐標(biāo)帶入圓的方程中可得,解得,將點(diǎn)坐標(biāo)帶入雙曲線中可得,化簡(jiǎn)得,故選D?!军c(diǎn)睛】本題考查了圓錐曲線的相關(guān)性質(zhì),主要考察了圓與雙曲線的相關(guān)性質(zhì),考查了圓與雙
10、曲線的綜合應(yīng)用,考查了數(shù)形結(jié)合思想,體現(xiàn)了綜合性,提高了學(xué)生的邏輯思維能力,是難題。7B【解析】設(shè),則,可得,即可得到,進(jìn)而找到對(duì)應(yīng)的點(diǎn)所在象限.【詳解】設(shè),則,所以復(fù)數(shù)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)為,在第二象限.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在象限,考查復(fù)數(shù)的模,考查運(yùn)算能力.8C【解析】由,,利用平面向量的數(shù)量積運(yùn)算,先求得利用平行四邊形的性質(zhì)可得結(jié)果.【詳解】如圖所示,平行四邊形中, ,,,因?yàn)?所以,,所以,故選C.【點(diǎn)睛】本題主要考查向量的幾何運(yùn)算以及平面向量數(shù)量積的運(yùn)算法則,屬于中檔題. 向量的運(yùn)算有兩種方法:()平行四邊形法則(平行四邊形的對(duì)角線分別是兩向量的和與差);
11、()三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).9D【解析】求出展開項(xiàng)中的常數(shù)項(xiàng)及含的項(xiàng),問(wèn)題得解?!驹斀狻空归_項(xiàng)中的常數(shù)項(xiàng)及含的項(xiàng)分別為:,,所以展開式中的常數(shù)項(xiàng)為:.故選:D【點(diǎn)睛】本題主要考查了二項(xiàng)式定理中展開式的通項(xiàng)公式及轉(zhuǎn)化思想,考查計(jì)算能力,屬于基礎(chǔ)題。10B【解析】先把沒(méi)有要求的3人排好,再分如下兩種情況討論:1.甲、丁兩者一起,與乙、丙都不相鄰,2.甲、丁一起與乙、丙二者之一相鄰.【詳解】首先將除甲、乙、丙、丁外的其余3人排好,共有種不同排列方式,甲、丁排在一起共有種不同方式;若甲、丁一起與乙、丙都不相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;若甲、丁一起與乙、丙
12、二者之一相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;根據(jù)分類加法、分步乘法原理,得滿足要求的排隊(duì)方法數(shù)為種.故選:B.【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用,在分類時(shí),要注意不重不漏的原則,本題是一道中檔題.11A【解析】首先根據(jù)等比數(shù)列分別求出滿足,的基本量,根據(jù)基本量的范圍即可確定答案.【詳解】為等比數(shù)列,若成立,有,因?yàn)楹愠闪?,故可以推出且,若成立,?dāng)時(shí),有,當(dāng)時(shí),有,因?yàn)楹愠闪?,所以有,故可以推出,所以“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題主要考查了等比數(shù)列基本量的求解,充分必要條件的集合關(guān)系,屬于基礎(chǔ)題.12C【解析】由題意,根據(jù)二項(xiàng)式定理展開式的通項(xiàng)公式,得展開式的通項(xiàng)
13、為,則展開式的通項(xiàng)為,由,得,所以所求的系數(shù)為.故選C.點(diǎn)睛:此題主要考查二項(xiàng)式定理的通項(xiàng)公式的應(yīng)用,以及組合數(shù)、整數(shù)冪的運(yùn)算等有關(guān)方面的知識(shí)與技能,屬于中低檔題,也是??贾R(shí)點(diǎn).在二項(xiàng)式定理的應(yīng)用中,注意區(qū)分二項(xiàng)式系數(shù)與系數(shù),先求出通項(xiàng)公式,再根據(jù)所求問(wèn)題,通過(guò)確定未知的次數(shù),求出,將的值代入通項(xiàng)公式進(jìn)行計(jì)算,從而問(wèn)題可得解.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由已知利用正弦定理,二倍角的正弦函數(shù)公式即可計(jì)算求值得解【詳解】解:a3,B2A,由正弦定理可得:,cosA故答案為【點(diǎn)睛】本題主要考查了正弦定理,二倍角的正弦函數(shù)公式在解三角形中的應(yīng)用,屬于基礎(chǔ)題14【解析】
14、由三角函數(shù)圖象相位變換后表達(dá)函數(shù)解析式,再利用三角恒等變換與輔助角公式整理的表達(dá)式,進(jìn)而由三角函數(shù)值域求得最大值.【詳解】將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則所以,當(dāng)函數(shù)最大,最大值為故答案為:【點(diǎn)睛】本題考查表示三角函數(shù)圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡(jiǎn)函數(shù)式并求最值,屬于簡(jiǎn)單題.15【解析】根據(jù)題意,分離參數(shù),轉(zhuǎn)化為只對(duì)于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,利用放縮法,得出,化簡(jiǎn)后得出,即可得出的取值范圍.【詳解】解:已知對(duì)于定義域內(nèi)的任意恒成立,即對(duì)于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,當(dāng)時(shí)取等號(hào),由可知,當(dāng)時(shí)取等號(hào),當(dāng)有解時(shí),令,則,在上單調(diào)
15、遞增,又,使得,則,所以的取值范圍為.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和最值,解決恒成立問(wèn)題求參數(shù)值,涉及分離參數(shù)法和放縮法,考查轉(zhuǎn)化能力和計(jì)算能力.161【解析】先畫出約束條件的可行域,根據(jù)平移法判斷出最優(yōu)點(diǎn),代入目標(biāo)函數(shù)的解析式,易可得到目標(biāo)函數(shù)的最大值【詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當(dāng)平行直線過(guò)點(diǎn)時(shí),取得最大值為:.故答案為:1【點(diǎn)睛】本題考查線性規(guī)劃求最值問(wèn)題,我們常用幾何法求最值.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(1)(2)證明見解析【解析】(1)在上有解,設(shè),求導(dǎo)根據(jù)函
16、數(shù)的單調(diào)性得到最值,得到答案.(2)證明,只需證,記,求導(dǎo)得到函數(shù)的單調(diào)性,得到函數(shù)的最小值,得到證明.【詳解】(1)由題可得,在上有解,則,令,當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以是的最大值點(diǎn),所以.(2)由,所以,要證明,只需證,即證.記在上單調(diào)遞增,且,當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.所以是的最小值點(diǎn),則,故.【點(diǎn)睛】本題考查了函數(shù)的切線問(wèn)題,證明不等式,意在考查學(xué)生的綜合應(yīng)用能力和轉(zhuǎn)化能力.18(1)的極坐標(biāo)方程為,普通方程為;(2)【解析】(1)根據(jù)三角函數(shù)恒等變換可得, ,可得曲線的普通方程,再運(yùn)用圖像的平移得依題意得曲線的普通方程為,利用極坐標(biāo)與平面直角坐標(biāo)互化的公式可得方程;(
17、2)法一:將代入曲線的極坐標(biāo)方程得,運(yùn)用韋達(dá)定理可得,根據(jù),可求得的范圍;法二:設(shè)直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,運(yùn)用韋達(dá)定理可得,根據(jù),可求得的范圍;【詳解】(1), ,即曲線的普通方程為,依題意得曲線的普通方程為,令,得曲線的極坐標(biāo)方程為;(2)法一:將代入曲線的極坐標(biāo)方程得,則,異號(hào),;法二:設(shè)直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,則,異號(hào),.【點(diǎn)睛】本題考查參數(shù)方程與普通方程,極坐標(biāo)方程與平面直角坐標(biāo)方程之間的轉(zhuǎn)化,求解幾何量的取值范圍,關(guān)鍵在于明確極坐標(biāo)系中極徑和極角的幾何含義,直線的參數(shù)方程,參數(shù)的幾何意義,屬于中檔題.
18、19(1),;(2).【解析】(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標(biāo)方程兩邊同時(shí)乘以得,進(jìn)而可化簡(jiǎn)得出曲線的直角坐標(biāo)方程;(2)根據(jù)變換得出的普通方程為,可設(shè)點(diǎn)的坐標(biāo)為,利用點(diǎn)到直線的距離公式結(jié)合正弦函數(shù)的有界性可得出結(jié)果.【詳解】(1)由(為參數(shù)),得,化簡(jiǎn)得,故直線的普通方程為.由,得,又,.所以的直角坐標(biāo)方程為;(2)由(1)得曲線的直角坐標(biāo)方程為,向下平移個(gè)單位得到,縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的倍得到曲線的方程為,所以曲線的參數(shù)方程為(為參數(shù)).故點(diǎn)到直線的距離為,當(dāng)時(shí),最小為.【點(diǎn)睛】本題考查曲線的參數(shù)方程、極坐標(biāo)方程與普通方程的相互轉(zhuǎn)化,同時(shí)也考查了利用橢圓的參數(shù)方程解決點(diǎn)到直線的距離最值的求解,考查計(jì)算能力,屬于中等題.20另一個(gè)特征值為,對(duì)應(yīng)的一個(gè)特征向量【解析】根據(jù)特征多項(xiàng)式的一個(gè)零點(diǎn)為3,可得,再回代到方程即可解出另一個(gè)特征值為,最后利用求特征向量的一般步驟,可求出其對(duì)應(yīng)的一個(gè)特征向量.【詳解】矩陣的特征多項(xiàng)式為:,是方程的一個(gè)根,解得,即 方程即,可得另一個(gè)特征值為:,設(shè)對(duì)應(yīng)的一個(gè)特征向量為: 則由,得得,令,則,所以矩陣另一
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 軟件安全設(shè)計(jì)評(píng)估報(bào)告范本
- 浙江省麗水市青田縣2023-2024學(xué)年五年級(jí)上學(xué)期英語(yǔ)期末試卷
- 石材固色劑知識(shí)培訓(xùn)課件
- 塑造五種心態(tài)培訓(xùn)課件4
- 年產(chǎn)6萬(wàn)噸飼用餅干粉和面包粉項(xiàng)目可行性研究報(bào)告寫作模板-申批備案
- 二零二五年度地產(chǎn)公司建筑工程合同風(fēng)險(xiǎn)評(píng)估與防控策略3篇
- 禮儀知識(shí)培訓(xùn)課件
- 二零二五年度辦公樓主體結(jié)構(gòu)施工與智慧安防系統(tǒng)合同3篇
- 中國(guó)大陸自閉癥干預(yù)方法研究綜述
- Unit 9 Can you come to my party Section A 1a~1c 說(shuō)課稿 -2024-2025學(xué)年人教版八年級(jí)英語(yǔ)上冊(cè)
- 口腔頜面外科學(xué) 09顳下頜關(guān)節(jié)疾病
- 臺(tái)達(dá)變頻器說(shuō)明書
- 2023年廣東羅浮山旅游集團(tuán)有限公司招聘筆試題庫(kù)及答案解析
- DB11-T1835-2021 給水排水管道工程施工技術(shù)規(guī)程高清最新版
- 解剖篇2-1內(nèi)臟系統(tǒng)消化呼吸生理學(xué)
- 《小學(xué)生錯(cuò)別字原因及對(duì)策研究(論文)》
- 北師大版七年級(jí)數(shù)學(xué)上冊(cè)教案(全冊(cè)完整版)教學(xué)設(shè)計(jì)含教學(xué)反思
- 智慧水庫(kù)平臺(tái)建設(shè)方案
- 系統(tǒng)性紅斑狼瘡-第九版內(nèi)科學(xué)
- 全統(tǒng)定額工程量計(jì)算規(guī)則1994
- 糧食平房倉(cāng)設(shè)計(jì)規(guī)范
評(píng)論
0/150
提交評(píng)論