廣東省廣州市第二2023學(xué)年高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
廣東省廣州市第二2023學(xué)年高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
廣東省廣州市第二2023學(xué)年高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
廣東省廣州市第二2023學(xué)年高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
廣東省廣州市第二2023學(xué)年高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、2023年高考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回

2、。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù)fx=sinx+6+A16,13B12在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是( )ABCD23如圖是二次函數(shù)的部分圖象,則函數(shù)的零點所在的區(qū)間是( )ABCD4已知集合,則等于( )ABCD5已知正三棱錐的所有頂點都在球的球面上,其底面邊長為4,、分別為側(cè)棱,的中點.若在三棱錐內(nèi),且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為( )ABCD6某中學(xué)2019年的高考考生人數(shù)是2016年高考考生人數(shù)的1.2倍,為了更好地對比該??忌纳龑W(xué)情況,統(tǒng)計了該校

3、2016年和2019年的高考情況,得到如圖柱狀圖: 則下列結(jié)論正確的是( ).A與2016年相比,2019年不上線的人數(shù)有所增加B與2016年相比,2019年一本達線人數(shù)減少C與2016年相比,2019年二本達線人數(shù)增加了0.3倍D2016年與2019年藝體達線人數(shù)相同7在復(fù)平面內(nèi),復(fù)數(shù)(,)對應(yīng)向量(O為坐標(biāo)原點),設(shè),以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國數(shù)學(xué)家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,則,由棣莫弗定理可以導(dǎo)出復(fù)數(shù)乘方公式:,已知,則( )AB4CD168如圖,這是某校高三年級甲、乙兩班在上學(xué)期的5次數(shù)學(xué)測試的班級平均分的莖葉圖,則下列說法不正確的是( )A甲班的數(shù)學(xué)成績平均分的

4、平均水平高于乙班B甲班的數(shù)學(xué)成績的平均分比乙班穩(wěn)定C甲班的數(shù)學(xué)成績平均分的中位數(shù)高于乙班D甲、乙兩班這5次數(shù)學(xué)測試的總平均分是1039設(shè),分別是橢圓的左、右焦點,過的直線交橢圓于,兩點,且,則橢圓的離心率為( )ABCD10若的二項式展開式中二項式系數(shù)的和為32,則正整數(shù)的值為( )A7B6C5D411已知集合,則集合( )ABCD12如圖,圓是邊長為的等邊三角形的內(nèi)切圓,其與邊相切于點,點為圓上任意一點,則的最大值為( )ABC2D二、填空題:本題共4小題,每小題5分,共20分。13在二項式的展開式中,的系數(shù)為_.14正四棱柱中,.若是側(cè)面內(nèi)的動點,且,則與平面所成角的正切值的最大值為_.1

5、5已知,滿足不等式組,則的取值范圍為_16已知為橢圓的左、右焦點,點在橢圓上移動時,的內(nèi)心的軌跡方程為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線與曲線交于兩點.(1)求的長;(2)在以為極點,軸的正半軸為極軸建立的極坐標(biāo)系中,設(shè)點的極坐標(biāo)為,求點到線段中點的距離.18(12分)(江蘇省徐州市高三第一次質(zhì)量檢測數(shù)學(xué)試題)在平面直角坐標(biāo)系中,已知平行于軸的動直線交拋物線: 于點,點為的焦點.圓心不在軸上的圓與直線, , 軸都相切,設(shè)的軌跡為曲線.(1)求曲線的方程;(2)若直線與曲線相切于點,過且垂直于的直線為

6、,直線, 分別與軸相交于點, .當(dāng)線段的長度最小時,求的值.19(12分)已知曲線C的極坐標(biāo)方程是.以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:(是參數(shù)).(1)若直線l與曲線C相交于A、B兩點,且,試求實數(shù)m值.(2)設(shè)為曲線上任意一點,求的取值范圍.20(12分)在銳角中,角A,B,C所對的邊分別為a,b,c.已知.(1)求的值;(2)當(dāng),且時,求的面積.21(12分)在以為頂點的五面體中,底面為菱形,二面角為直二面角.()證明:;()求二面角的余弦值.22(10分)已知的三個內(nèi)角所對的邊分別為,向量,且.(1)求角的大小;(2)若,求的值參考

7、答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】將fx整理為3sinx+3,根據(jù)x的范圍可求得x+3【詳解】f當(dāng)x0,時,又f0=3sin由fx在0,上的值域為32解得:本題正確選項:A【點睛】本題考查利用正弦型函數(shù)的值域求解參數(shù)范圍的問題,關(guān)鍵是能夠結(jié)合正弦型函數(shù)的圖象求得角的范圍的上下限,從而得到關(guān)于參數(shù)的不等式.2B【解析】畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點,再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時,有最大值為,即,故.當(dāng),即時等號成立.故選:.【點睛】本題考查了線性規(guī)劃

8、中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.3B【解析】根據(jù)二次函數(shù)圖象的對稱軸得出范圍,軸截距,求出的范圍,判斷在區(qū)間端點函數(shù)值正負(fù),即可求出結(jié)論.【詳解】,結(jié)合函數(shù)的圖象可知,二次函數(shù)的對稱軸為,所以在上單調(diào)遞增.又因為,所以函數(shù)的零點所在的區(qū)間是.故選:B.【點睛】本題考查二次函數(shù)的圖象及函數(shù)的零點,屬于基礎(chǔ)題.4C【解析】先化簡集合A,再與集合B求交集.【詳解】因為,所以.故選:C【點睛】本題主要考查集合的基本運算以及分式不等式的解法,屬于基礎(chǔ)題.5D【解析】如圖,平面截球所得截面的圖形為圓面,計算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,

9、平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點記為,連接、.依題意,所以,設(shè)球的半徑為,在中,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點睛】本題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學(xué)生的計算能力和空間想象能力.6A【解析】設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,通過簡單的計算逐一驗證選項A、B、C、D.【詳解】設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,2016年高考不上線人數(shù)為,2019年不上線人數(shù)為,故A正確;

10、2016年高考一本人數(shù),2019年高考一本人數(shù),故B錯誤;2019年二本達線人數(shù),2016年二本達線人數(shù),增加了倍,故C錯誤;2016年藝體達線人數(shù),2019年藝體達線人數(shù),故D錯誤.故選:A.【點睛】本題考查柱狀圖的應(yīng)用,考查學(xué)生識圖的能力,是一道較為簡單的統(tǒng)計類的題目.7D【解析】根據(jù)復(fù)數(shù)乘方公式:,直接求解即可.【詳解】, .故選:D【點睛】本題考查了復(fù)數(shù)的新定義題目、同時考查了復(fù)數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復(fù)數(shù)化為棣莫弗定理形式,屬于基礎(chǔ)題.8D【解析】計算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無法計算,錯誤,得到答案.【詳解】由題意可得甲

11、班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因為甲、乙兩班的人數(shù)不知道,所以兩班的總平均分無法計算,故D錯誤.故選:.【點睛】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學(xué)生的計算能力和應(yīng)用能力.9C【解析】根據(jù)表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構(gòu)造出關(guān)系,求出離心率.【詳解】設(shè),則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.【點睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關(guān)系,構(gòu)造出關(guān)系,得到離心率.屬于中檔題.10C【解析】由二項式系數(shù)

12、性質(zhì),的展開式中所有二項式系數(shù)和為計算【詳解】的二項展開式中二項式系數(shù)和為,故選:C【點睛】本題考查二項式系數(shù)的性質(zhì),掌握二項式系數(shù)性質(zhì)是解題關(guān)鍵11D【解析】根據(jù)集合的混合運算,即可容易求得結(jié)果.【詳解】,故可得.故選:D.【點睛】本題考查集合的混合運算,屬基礎(chǔ)題.12C【解析】建立坐標(biāo)系,寫出相應(yīng)的點坐標(biāo),得到的表達式,進而得到最大值.【詳解】以D點為原點,BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為 可得到點的坐標(biāo)為: 故得到 故得到 , 故最大值為:2.故答案為C.【點睛】這個題目

13、考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問題.通過向量的運算,將問題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問題的一般方法.二、填空題:本題共4小題,每小題5分,共20分。1360【解析】直接利用二項式定理計算得到答案.【詳解】二項式的展開式通項為:,取,則的系數(shù)為.故答案為:.【點睛】本題考查了二項式定理,意在考查學(xué)生的計算能力和應(yīng)用能力.142.【解析】如圖,以為原點建立空間直角坐標(biāo)系,設(shè)點,由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點建立空間直角坐標(biāo)系

14、,設(shè)點,則,又,得即;又平面,為與平面所成角,令,當(dāng)時,最大,即與平面所成角的正切值的最大值為2.故答案為:2【點睛】本題主要考查了立體幾何中的動點問題,考查了直線與平面所成角的計算.對于這類題,一般是建立空間直角坐標(biāo),在動點坐標(biāo)內(nèi)引入?yún)?shù),將最值問題轉(zhuǎn)化為函數(shù)的最值問題求解,考查了學(xué)生的運算求解能力和直觀想象能力.15【解析】畫出不等式組表示的平面區(qū)域如下圖中陰影部分所示,易知在點處取得最小值,即,所以由圖可知的取值范圍為16【解析】考查更為一般的問題:設(shè)P為橢圓C:上的動點,為橢圓的兩個焦點,為PF1F2的內(nèi)心,求點I的軌跡方程解法一:如圖,設(shè)內(nèi)切圓I與F1F2的切點為H,半徑為r,且F1

15、H=y,F(xiàn)2H=z,PF1=x+y,PF2=x+z,則.直線IF1與IF2的斜率之積:,而根據(jù)海倫公式,有PF1F2的面積為因此有.再根據(jù)橢圓的斜率積定義,可得I點的軌跡是以F1F2為長軸,離心率e滿足的橢圓,其標(biāo)準(zhǔn)方程為.解法二:令,則三角形PF1F2的面積:,其中r為內(nèi)切圓的半徑,解得.另一方面,由內(nèi)切圓的性質(zhì)及焦半徑公式得:從而有消去得到點I的軌跡方程為:.本題中:,代入上式可得軌跡方程為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1) ;(2).【解析】(1)將直線的參數(shù)方程化為直角坐標(biāo)方程,由點到直線距離公式可求得圓心到直線距離,結(jié)合垂徑定理即可求得的長;

16、(2)將的極坐標(biāo)化為直角坐標(biāo),將直線方程與圓的方程聯(lián)立,求得直線與圓的兩個交點坐標(biāo),由中點坐標(biāo)公式求得的坐標(biāo),再根據(jù)兩點間距離公式即可求得.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),化為直角坐標(biāo)方程為,即直線與曲線交于兩點.則圓心坐標(biāo)為,半徑為1,則由點到直線距離公式可知,所以.(2)點的極坐標(biāo)為,化為直角坐標(biāo)可得,直線的方程與曲線的方程聯(lián)立,化簡可得,解得,所以兩點坐標(biāo)為,所以,由兩點間距離公式可得.【點睛】本題考查了參數(shù)方程與普通方程轉(zhuǎn)化,極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化,點到直線距離公式應(yīng)用,兩點間距離公式的應(yīng)用,直線與圓交點坐標(biāo)求法,屬于基礎(chǔ)題.18 (1) (2)見解析.【解析】試題分析:(1

17、)設(shè)根據(jù)題意得到,化簡得到軌跡方程;(2)設(shè), ,構(gòu)造函數(shù)研究函數(shù)的單調(diào)性,得到函數(shù)的最值.解析:(1)因為拋物線的方程為,所以的坐標(biāo)為,設(shè),因為圓與軸、直線都相切,平行于軸,所以圓的半徑為,點 ,則直線的方程為,即, 所以,又,所以,即,所以的方程為 (2)設(shè), ,由(1)知,點處的切線的斜率存在,由對稱性不妨設(shè),由,所以,所以, 所以 令,則,由得,由得,所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,所以當(dāng)時,取得極小值也是最小值,即取得最小值, 此時 點睛:求軌跡方程,一般是問誰設(shè)誰的坐標(biāo)然后根據(jù)題目等式直接求解即可,而對于直線與曲線的綜合問題要先分析題意轉(zhuǎn)化為等式,例如,可以轉(zhuǎn)化為向量坐標(biāo)進行運算也

18、可以轉(zhuǎn)化為斜率來理解,然后借助韋達定理求解即可運算此類題計算一定要仔細(xì).19(1)或;(2).【解析】(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,在直角坐標(biāo)條件下求出曲線的圓心坐標(biāo)和半徑,將直線的參數(shù)方程化為普通方程,由勾股定理列出等式可求的值;(2)將圓化為參數(shù)方程形式,代入由三角公式化簡可求其取值范圍【詳解】(1)曲線C的極坐標(biāo)方程是化為直角坐標(biāo)方程為:直線的直角坐標(biāo)方程為:圓心到直線l的距離(弦心距)圓心到直線的距離為 :或(2)曲線的方程可化為,其參數(shù)方程為:為曲線上任意一點,的取值范圍是20(1);(2)【解析】(1)利用二倍角公式求解即可,注意隱含條件. (2)利用(1)中的結(jié)論,結(jié)合正弦定理和同角三角函數(shù)的關(guān)系易得的值,又由求出的值,最后由正弦定理求出的值,根據(jù)三角形的面積公式即可計算得出.【詳解】(1)由已知可得,所以,因為在銳角中,所以 (2)因為,所以,因為是銳角三角形,所以,所以.由正弦定理可得:,所以,所以【點睛】此類問

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論