版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1某幾何體的三視圖如圖所示,則該幾何體的體積為( )AB3CD42設(shè),則的大小關(guān)系是( )ABCD3已知函數(shù)的定義域?yàn)?,且,?dāng)時(shí),.若,則函數(shù)在上的最大值為( )A4B6C3D84下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是( )ABCD5已知函
2、數(shù)的值域?yàn)椋瘮?shù),則的圖象的對(duì)稱中心為( )ABCD6已知雙曲線的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,則雙曲線的離心率為( )ABC3D47如圖,四邊形為平行四邊形,為中點(diǎn),為的三等分點(diǎn)(靠近)若,則的值為( )ABCD8函數(shù)(且)的圖象可能為( )ABCD9如圖,是圓的一條直徑,為半圓弧的兩個(gè)三等分點(diǎn),則( )ABCD10已知圓錐的高為3,底面半徑為,若該圓錐的頂點(diǎn)與底面的圓周都在同一個(gè)球面上,則這個(gè)球的體積與圓錐的體積的比值為( )ABCD11趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為周髀算經(jīng)一書作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由4個(gè)全等的直
3、角三角形再加上中間的一個(gè)小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成一個(gè)大等邊三角形.設(shè),若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形(陰影部分)的概率是( )ABCD12己知集合,則( )ABCD 二、填空題:本題共4小題,每小題5分,共20分。13設(shè)Sn為數(shù)列an的前n項(xiàng)和,若an0,a1=1,且2Sn=an(an+t),nN*,則S10=_.14設(shè)的內(nèi)角的對(duì)邊分別為,若,則_15若正實(shí)數(shù)x,y,滿足x+2y=5,則x216三棱錐中,點(diǎn)是斜邊上一點(diǎn).給出下列四個(gè)命題:若平面,則三棱錐的四個(gè)面都是直角三角形;若,
4、平面,則三棱錐的外接球體積為;若,在平面上的射影是內(nèi)心,則三棱錐的體積為2;若,平面,則直線與平面所成的最大角為.其中正確命題的序號(hào)是_(把你認(rèn)為正確命題的序號(hào)都填上)三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知函數(shù),(1)證明:在區(qū)間單調(diào)遞減;(2)證明:對(duì)任意的有18(12分)記為數(shù)列的前項(xiàng)和,已知,等比數(shù)列滿足,.(1)求的通項(xiàng)公式;(2)求的前項(xiàng)和.19(12分)已知拋物線的焦點(diǎn)為,直線交于兩點(diǎn)(異于坐標(biāo)原點(diǎn)O).(1)若直線過(guò)點(diǎn),,求的方程;(2)當(dāng)時(shí),判斷直線是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),說(shuō)明理由.20(12分)已知函數(shù)的最大值
5、為2.()求函數(shù)在上的單調(diào)遞減區(qū)間;()中,角所對(duì)的邊分別是,且,求的面積21(12分)在ABC中,角所對(duì)的邊分別為向量,向量,且.(1)求角的大??;(2)求的最大值.22(10分)已知,(1)求的最小正周期及單調(diào)遞增區(qū)間;(2)已知銳角的內(nèi)角,的對(duì)邊分別為,且,求邊上的高的最大值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】首先把三視圖轉(zhuǎn)換為幾何體,該幾何體為由一個(gè)三棱柱體,切去一個(gè)三棱錐體,由柱體、椎體的體積公式進(jìn)一步求出幾何體的體積.【詳解】解:根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為由一個(gè)三棱柱體,切去一個(gè)
6、三棱錐體,如圖所示:故:.故選:C.【點(diǎn)睛】本題考查了由三視圖求幾何體的體積、需熟記柱體、椎體的體積公式,考查了空間想象能力,屬于基礎(chǔ)題.2A【解析】選取中間值和,利用對(duì)數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因?yàn)閷?duì)數(shù)函數(shù)在上單調(diào)遞增,所以,因?yàn)閷?duì)數(shù)函數(shù)在上單調(diào)遞減,所以,因?yàn)橹笖?shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【點(diǎn)睛】本題考查利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識(shí)的綜合運(yùn)用能力;選取合適的中間值是求解本題的關(guān)鍵;屬于中檔題、常考題型.3A【解析】根據(jù)所給函數(shù)解析式滿足的等量關(guān)系及指數(shù)冪運(yùn)算,可得;利用定義可證明函數(shù)的單調(diào)性,由賦值法即可求得函數(shù)在上的最
7、大值.【詳解】函數(shù)的定義域?yàn)椋?,則;任取,且,則,故,令,則,即,故函數(shù)在上單調(diào)遞增,故,令,故,故函數(shù)在上的最大值為4.故選:A.【點(diǎn)睛】本題考查了指數(shù)冪的運(yùn)算及化簡(jiǎn),利用定義證明抽象函數(shù)的單調(diào)性,賦值法在抽象函數(shù)求值中的應(yīng)用,屬于中檔題.4C【解析】對(duì)選項(xiàng)逐個(gè)驗(yàn)證即得答案.【詳解】對(duì)于,是偶函數(shù),故選項(xiàng)錯(cuò)誤;對(duì)于,定義域?yàn)?,在上不是單調(diào)函數(shù),故選項(xiàng)錯(cuò)誤;對(duì)于,當(dāng)時(shí),;當(dāng)時(shí),;又時(shí),.綜上,對(duì),都有,是奇函數(shù).又時(shí),是開(kāi)口向上的拋物線,對(duì)稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項(xiàng)正確;對(duì)于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項(xiàng)錯(cuò)誤.故選:.【點(diǎn)睛】本題考查
8、函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.5B【解析】由值域?yàn)榇_定的值,得,利用對(duì)稱中心列方程求解即可【詳解】因?yàn)椋忠李}意知的值域?yàn)?,所?得,所以,令,得,則的圖象的對(duì)稱中心為.故選:B【點(diǎn)睛】本題考查三角函數(shù) 的圖像及性質(zhì),考查函數(shù)的對(duì)稱中心,重點(diǎn)考查值域的求解,易錯(cuò)點(diǎn)是對(duì)稱中心縱坐標(biāo)錯(cuò)寫為06A【解析】根據(jù)題意,由拋物線的方程可得其焦點(diǎn)坐標(biāo),由此可得雙曲線的焦點(diǎn)坐標(biāo),由雙曲線的幾何性質(zhì)可得,解可得,由離心率公式計(jì)算可得答案【詳解】根據(jù)題意,拋物線的焦點(diǎn)為,則雙曲線的焦點(diǎn)也為,即,則有,解可得,雙曲線的離心率.故選:A【點(diǎn)睛】本題主要考查雙曲線、拋物線的標(biāo)準(zhǔn)方程,關(guān)鍵是求出拋物線焦點(diǎn)的坐標(biāo),意在考查學(xué)
9、生對(duì)這些知識(shí)的理解掌握水平7D【解析】使用不同方法用表示出,結(jié)合平面向量的基本定理列出方程解出【詳解】解:,又解得,所以故選:D【點(diǎn)睛】本題考查了平面向量的基本定理及其意義,屬于基礎(chǔ)題8D【解析】因?yàn)椋屎瘮?shù)是奇函數(shù),所以排除A,B;取,則,故選D.考點(diǎn):1.函數(shù)的基本性質(zhì);2.函數(shù)的圖象.9B【解析】連接、,即可得到,再根據(jù)平面向量的數(shù)量積及運(yùn)算律計(jì)算可得;【詳解】解:連接、,是半圓弧的兩個(gè)三等分點(diǎn), ,且,所以四邊形為棱形,故選:B【點(diǎn)睛】本題考查平面向量的數(shù)量積及其運(yùn)算律的應(yīng)用,屬于基礎(chǔ)題.10B【解析】計(jì)算求半徑為,再計(jì)算球體積和圓錐體積,計(jì)算得到答案.【詳解】如圖所示:設(shè)球半徑為,則
10、,解得.故求體積為:,圓錐的體積:,故.故選:.【點(diǎn)睛】本題考查了圓錐,球體積,圓錐的外接球問(wèn)題,意在考查學(xué)生的計(jì)算能力和空間想象能力.11A【解析】根據(jù)幾何概率計(jì)算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可【詳解】在中,由余弦定理,得,所以.所以所求概率為.故選A.【點(diǎn)睛】本題考查了幾何概型的概率計(jì)算問(wèn)題,是基礎(chǔ)題12C【解析】先化簡(jiǎn),再求.【詳解】因?yàn)椋忠驗(yàn)?,所以,故選:C.【點(diǎn)睛】本題主要考查一元二次不等式的解法、集合的運(yùn)算,還考查了運(yùn)算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。1355【解析】由求出.由,可得,兩式相減,可得數(shù)列是以1為首項(xiàng),
11、1為公差的等差數(shù)列,即求.【詳解】由題意,當(dāng)n=1時(shí),當(dāng)時(shí),由,可得,兩式相減,可得,整理得,即,數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列,.故答案為:55.【點(diǎn)睛】本題考查求數(shù)列的前項(xiàng)和,屬于基礎(chǔ)題.14或【解析】試題分析:由,則可運(yùn)用同角三角函數(shù)的平方關(guān)系:,已知兩邊及其對(duì)角,求角用正弦定理;,則;可得考點(diǎn):運(yùn)用正弦定理解三角形(注意多解的情況判斷)158【解析】分析:將題中的式子進(jìn)行整理,將x+1當(dāng)做一個(gè)整體,之后應(yīng)用已知兩個(gè)正數(shù)的整式形式和為定值,求分式形式和的最值的問(wèn)題的求解方法,即可求得結(jié)果.詳解:x2-3x+1+2點(diǎn)睛:該題屬于應(yīng)用基本不等式求最值的問(wèn)題,解決該題的關(guān)鍵是需要對(duì)式子進(jìn)
12、行化簡(jiǎn),轉(zhuǎn)化,利用整體思維,最后注意此類問(wèn)題的求解方法-相乘,即可得結(jié)果.16【解析】對(duì),由線面平行的性質(zhì)可判斷正確;對(duì),三棱錐外接球可看作正方體的外接球,結(jié)合外接球半徑公式即可求解;對(duì),結(jié)合題意作出圖形,由勾股定理和內(nèi)接圓對(duì)應(yīng)面積公式求出錐體的高,則可求解;對(duì),由動(dòng)點(diǎn)分析可知,當(dāng)點(diǎn)與點(diǎn)重合時(shí),直線與平面所成的角最大,結(jié)合幾何關(guān)系可判斷錯(cuò)誤;【詳解】對(duì)于,因?yàn)槠矫?,所以,又,所以平面,所以,故四個(gè)面都是直角三角形,正確;對(duì)于,若,平面,三棱錐的外接球可以看作棱長(zhǎng)為4的正方體的外接球,體積為,正確;對(duì)于,設(shè)內(nèi)心是,則平面,連接,則有,又內(nèi)切圓半徑,所以,故,三棱錐的體積為,正確; 對(duì)于,若,平面
13、,則直線與平面所成的角最大時(shí),點(diǎn)與點(diǎn)重合,在中,即直線與平面所成的最大角為,不正確,故答案為:.【點(diǎn)睛】本題考查立體幾何基本關(guān)系的應(yīng)用,線面垂直的性質(zhì)及判定、錐體體積、外接球半徑求解,線面角的求解,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(1)答案見(jiàn)解析(2)答案見(jiàn)解析【解析】(1)利用復(fù)合函數(shù)求導(dǎo)求出,利用導(dǎo)數(shù)與函數(shù)單調(diào)性之間的關(guān)系即可求解. (2)首先證,令,求導(dǎo)可得單調(diào)遞增,由即可證出;再令,再利用導(dǎo)數(shù)可得單調(diào)遞增,由即可證出.【詳解】(1)顯然時(shí),故在單調(diào)遞減(2)首先證,令,則單調(diào)遞增,且,所以再令,所以單調(diào)遞增,即,【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究
14、函數(shù)的單調(diào)性、利用導(dǎo)數(shù)證明不等式,解題的關(guān)鍵掌握復(fù)合函數(shù)求導(dǎo),屬于難題.18(1)(2)當(dāng)時(shí),;當(dāng)時(shí),.【解析】(1)利用數(shù)列與的關(guān)系,求得;(2)由(1)可得:,算出公比,利用等比數(shù)列的前項(xiàng)和公式求出.【詳解】(1)當(dāng)時(shí),當(dāng)時(shí),因?yàn)檫m合上式,所以.(2)由(1)得,設(shè)等比數(shù)列的公比為,則,解得,當(dāng)時(shí),當(dāng)時(shí),.【點(diǎn)睛】本題主要考查數(shù)列與的關(guān)系、等比數(shù)列的通項(xiàng)公式、前項(xiàng)和公式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.19(1)(2)直線過(guò)定點(diǎn)【解析】設(shè).(1)由題意知,.設(shè)直線的方程為,由得,則,由根與系數(shù)的關(guān)系可得,所以.由,得,解得.所以拋物線的方程為.(2)設(shè)直線的方程為,由得,由根與系數(shù)的關(guān)系可得,
15、 所以,解得.所以直線的方程為,所以時(shí),直線過(guò)定點(diǎn).20()()【解析】(1)由題意,f(x)的最大值為所以而m0,于是m=,f(x)=2sin(x+).由正弦函數(shù)的單調(diào)性可得x滿足即所以f(x)在0,上的單調(diào)遞減區(qū)間為(2)設(shè)ABC的外接圓半徑為R,由題意,得化簡(jiǎn)得sin A+sin B=2sin Asin B.由正弦定理,得 由余弦定理,得a2+b2-ab=9,即(a+b)2-3ab-9=0將式代入,得2(ab)2-3ab-9=0,解得ab=3或(舍去),故21(1)(2)2【解析】(1)轉(zhuǎn)化條件得,進(jìn)而可得,即可得解;(2)由化簡(jiǎn)可得,由結(jié)合三角函數(shù)的性質(zhì)即可得解.【詳解】(1),由正弦定理得,即,又 ,又 , 由可得.(2)由(1)可得,的最大值為2.【點(diǎn)睛】本題考查了平面向量平行、正弦定理以及三角恒等變換的應(yīng)用,考查了三角函數(shù)的性質(zhì),屬于中檔題.22(1)的最小正周期為:;函數(shù)單調(diào)遞增區(qū)間為:;(2).【解析】(1)根據(jù)誘導(dǎo)公式,結(jié)合二倍角的正弦公式、輔助角公式把函數(shù)的解析式化簡(jiǎn)成余弦
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游紀(jì)念品銷售租賃合同
- 2024年國(guó)際貨物交易服務(wù)平臺(tái)協(xié)議
- 城市管道保溫施工合同
- 漁業(yè)資源保護(hù)苗種管理
- 醫(yī)療云計(jì)算設(shè)備養(yǎng)護(hù)管理辦法
- 珠寶首飾流通新規(guī):典當(dāng)管理辦法
- 旅游設(shè)施施工代理協(xié)議
- 消防設(shè)施采購(gòu)招投標(biāo)注意事項(xiàng)
- 銷售部員工年度工作總結(jié)5篇
- 04版物業(yè)公司能源管理優(yōu)化合同
- 廣告宣傳費(fèi)用巧籌劃三個(gè)方案
- 模板支架及腳手架安全使用培訓(xùn)課件
- 企業(yè)財(cái)產(chǎn)保險(xiǎn)投保單
- CT報(bào)告單模板精編版
- 柿子品種介紹PPT課件
- 內(nèi)鏡清潔消毒登記表格模板
- 天然氣脫硫(課堂運(yùn)用)
- 幼兒園教師師德師風(fēng)考核表(共2頁(yè))
- 城鎮(zhèn)職工醫(yī)療保險(xiǎn)運(yùn)行中的問(wèn)題分析及措施
- 學(xué)校食堂五常法管理制度
- 畢業(yè)設(shè)計(jì)500kv變電站設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論