版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2023年高考數(shù)學(xué)模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認真閱讀答題紙上的注意事項,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù),且在上是單調(diào)函數(shù),則下列說法正確的是( )ABC函數(shù)在上單調(diào)遞減D函數(shù)的圖像關(guān)于點對稱2九章算術(shù)是我國古代數(shù)學(xué)名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內(nèi)切圓
2、的直徑為多少步?”現(xiàn)從該三角形內(nèi)隨機取一點,則此點取自內(nèi)切圓的概率是( )ABCD3已知平面,直線滿足,則“”是“”的( )A充分不必要條件B必要不充分條件C充要條件D即不充分也不必要條件4把滿足條件(1),(2),使得的函數(shù)稱為“D函數(shù)”,下列函數(shù)是“D函數(shù)”的個數(shù)為( ) A1個B2個C3個D4個5已知角的頂點為坐標原點,始邊與軸的非負半軸重合,終邊上有一點,則( )ABCD6下列函數(shù)中,值域為R且為奇函數(shù)的是( )ABCD7在等差數(shù)列中,若為前項和,則的值是( )A156B124C136D1808某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應(yīng)點為,圓柱表
3、面上的點在左視圖上的對應(yīng)點為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為( )ABCD29已知函數(shù)(表示不超過x的最大整數(shù)),若有且僅有3個零點,則實數(shù)a的取值范圍是()ABCD10已知函數(shù)(,),將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的部分圖象如圖所示,則是的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件11 的內(nèi)角的對邊分別為,已知,則角的大小為( )ABCD12設(shè)變量滿足約束條件,則目標函數(shù)的最大值是( )A7B5C3D2二、填空題:本題共4小題,每小題5分,共20分。13已知正方形邊長為,空間中的動點滿足,則三棱錐體積的最大值是_.14在平面直角坐標系中
4、,若雙曲線經(jīng)過點(3,4),則該雙曲線的準線方程為_15一個四面體的頂點在空間直角坐標系中的坐標分別是,則該四面體的外接球的體積為_16正方體的棱長為2, 是它的內(nèi)切球的一條弦(我們把球面上任意兩點之間的線段稱為球的弦), 為正方體表面上的動點,當(dāng)弦的長度最大時, 的取值范圍是_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在中國,不僅是購物,而且從共享單車到醫(yī)院掛號再到公共繳費,日常生活中幾乎全部領(lǐng)域都支持手機支付.出門不帶現(xiàn)金的人數(shù)正在迅速增加。中國人民大學(xué)和法國調(diào)查公司益普索合作,調(diào)查了騰訊服務(wù)的6000名用戶,從中隨機抽取了60名,統(tǒng)計他們出門隨身攜帶現(xiàn)
5、金(單位:元)如莖葉圖如示,規(guī)定:隨身攜帶的現(xiàn)金在100元以下(不含100元)的為“手機支付族”,其他為“非手機支付族”. (1)根據(jù)上述樣本數(shù)據(jù),將列聯(lián)表補充完整,并判斷有多大的把握認為“手機支付族”與“性別”有關(guān)?(2)用樣本估計總體,若從騰訊服務(wù)的用戶中隨機抽取3位女性用戶,這3位用戶中“手機支付族”的人數(shù)為,求隨機變量的期望和方差;(3)某商場為了推廣手機支付,特推出兩種優(yōu)惠方案,方案一:手機支付消費每滿1000元可直減100元;方案二:手機支付消費每滿1000元可抽獎2次,每次中獎的概率同為,且每次抽獎互不影響,中獎一次打9折,中獎兩次打8.5折.如果你打算用手機支付購買某樣價值12
6、00元的商品,請從實際付款金額的數(shù)學(xué)期望的角度分析,選擇哪種優(yōu)惠方案更劃算?附: 0.0500.0100.001 3.8416.63510.82818(12分)已知函數(shù),.(1)證明:函數(shù)的極小值點為1;(2)若函數(shù)在有兩個零點,證明:.19(12分)如圖,在四棱柱中,底面為菱形,.(1)證明:平面平面;(2)若,是等邊三角形,求二面角的余弦值.20(12分)下表是某公司2018年512月份研發(fā)費用(百萬元)和產(chǎn)品銷量(萬臺)的具體數(shù)據(jù):月 份56789101112研發(fā)費用(百萬元)2361021131518產(chǎn)品銷量(萬臺)1122.563.53.54.5()根據(jù)數(shù)據(jù)可知與之間存在線性相關(guān)關(guān)系
7、,求出與的線性回歸方程(系數(shù)精確到0.01);()該公司制定了如下獎勵制度:以(單位:萬臺)表示日銷售,當(dāng)時,不設(shè)獎;當(dāng)時,每位員工每日獎勵200元;當(dāng)時,每位員工每日獎勵300元;當(dāng)時,每位員工每日獎勵400元.現(xiàn)已知該公司某月份日銷售(萬臺)服從正態(tài)分布(其中是2018年5-12月產(chǎn)品銷售平均數(shù)的二十分之一),請你估計每位員工該月(按30天計算)獲得獎勵金額總數(shù)大約多少元. 參考數(shù)據(jù):,參考公式:相關(guān)系數(shù),其回歸直線中的,若隨機變量服從正態(tài)分布,則,.21(12分)已知(1)若的解集為,求的值;(2)若對任意,不等式恒成立,求實數(shù)的取值范圍22(10分)在四棱錐中,底面為直角梯形,分別為,
8、的中點(1)求證:(2)若,求二面角的余弦值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據(jù)函數(shù),在上是單調(diào)函數(shù),確定 ,然后一一驗證,A.若,則,由,得,但.B.由,確定,再求解驗證.C.利用整體法根據(jù)正弦函數(shù)的單調(diào)性判斷.D.計算是否為0.【詳解】因為函數(shù),在上是單調(diào)函數(shù),所以 ,即,所以 ,若,則,又因為,即,解得, 而,故A錯誤.由,不妨令 ,得由,得 或當(dāng)時,不合題意.當(dāng)時,此時所以,故B正確.因為,函數(shù),在上是單調(diào)遞增,故C錯誤.,故D錯誤.故選:B【點睛】本題主要考查三角函數(shù)的性質(zhì)及其應(yīng)用,還考查了運算
9、求解的能力,屬于較難的題.2C【解析】利用直角三角形三邊與內(nèi)切圓半徑的關(guān)系求出半徑,再分別求出三角形和內(nèi)切圓的面積,根據(jù)幾何概型的概率計算公式,即可求解.【詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內(nèi)切圓的半徑為,所以向次三角形內(nèi)投擲豆子,則落在其內(nèi)切圓內(nèi)的概率為.故選:C.【點睛】本題主要考查了面積比的幾何概型的概率的計算問題,其中解答中熟練應(yīng)用直角三角形的性質(zhì),求得其內(nèi)切圓的半徑是解答的關(guān)鍵,著重考查了推理與運算能力.3A【解析】,是相交平面,直線平面,則“” “”,反之,直線滿足,則或/或平面,即可判斷出結(jié)論【詳解】解:已知直線平面,則“” “”,反之,直線滿足,則或/或平
10、面, “”是“”的充分不必要條件故選:A.【點睛】本題考查了線面和面面垂直的判定與性質(zhì)定理、簡易邏輯的判定方法,考查了推理能力與計算能力4B【解析】滿足(1)(2)的函數(shù)是偶函數(shù)且值域關(guān)于原點對稱,分別對所給函數(shù)進行驗證.【詳解】滿足(1)(2)的函數(shù)是偶函數(shù)且值域關(guān)于原點對稱,不滿足(2);不滿足(1);不滿足(2);均滿足(1)(2).故選:B.【點睛】本題考查新定義函數(shù)的問題,涉及到函數(shù)的性質(zhì),考查學(xué)生邏輯推理與分析能力,是一道容易題.5B【解析】根據(jù)角終邊上的點坐標,求得,代入二倍角公式即可求得的值.【詳解】因為終邊上有一點,所以,故選:B【點睛】此題考查二倍角公式,熟練記憶公式即可解
11、決,屬于簡單題目.6C【解析】依次判斷函數(shù)的值域和奇偶性得到答案.【詳解】A. ,值域為,非奇非偶函數(shù),排除; B. ,值域為,奇函數(shù),排除;C. ,值域為,奇函數(shù),滿足; D. ,值域為,非奇非偶函數(shù),排除;故選:.【點睛】本題考查了函數(shù)的值域和奇偶性,意在考查學(xué)生對于函數(shù)知識的綜合應(yīng)用.7A【解析】因為,可得,根據(jù)等差數(shù)列前項和,即可求得答案.【詳解】,.故選:A.【點睛】本題主要考查了求等差數(shù)列前項和,解題關(guān)鍵是掌握等差中項定義和等差數(shù)列前項和公式,考查了分析能力和計算能力,屬于基礎(chǔ)題.8B【解析】首先根據(jù)題中所給的三視圖,得到點M和點N在圓柱上所處的位置,將圓柱的側(cè)面展開圖平鋪,點M、
12、N在其四分之一的矩形的對角線的端點處,根據(jù)平面上兩點間直線段最短,利用勾股定理,求得結(jié)果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開圖平鋪,可以確定點M和點N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點處,所以所求的最短路徑的長度為,故選B.點睛:該題考查的是有關(guān)幾何體的表面上兩點之間的最短距離的求解問題,在解題的過程中,需要明確兩個點在幾何體上所處的位置,再利用平面上兩點間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關(guān)特征求得結(jié)果.9A【解析】根據(jù)x的定義先作出函數(shù)f(x)的圖象,利用函數(shù)與方程的關(guān)系轉(zhuǎn)化為f(x)與g(x)=
13、ax有三個不同的交點,利用數(shù)形結(jié)合進行求解即可【詳解】當(dāng)時,當(dāng)時,當(dāng)時,當(dāng)時,若有且僅有3個零點,則等價為有且僅有3個根,即與有三個不同的交點,作出函數(shù)和的圖象如圖,當(dāng)a=1時,與有無數(shù)多個交點,當(dāng)直線經(jīng)過點時,即,時,與有兩個交點,當(dāng)直線經(jīng)過點時,即時,與有三個交點,要使與有三個不同的交點,則直線處在過和之間,即,故選:A【點睛】利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)的范圍; (2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域(最值)問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的
14、圖象,然后數(shù)形結(jié)合求解.10B【解析】先根據(jù)圖象求出函數(shù)的解析式,再由平移知識得到的解析式,然后分別找出和的等價條件,即可根據(jù)充分條件,必要條件的定義求出.【詳解】設(shè),根據(jù)圖象可知,再由, 取,.將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,.,令,則,顯然,是的必要不充分條件.故選:B【點睛】本題主要考查利用圖象求正(余)弦型函數(shù)的解析式,三角函數(shù)的圖形變換, 二倍角公式的應(yīng)用,充分條件,必要條件的定義的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運算能力和邏輯推理能力,屬于中檔題.11A【解析】先利用正弦定理將邊統(tǒng)一化為角,然后利用三角函數(shù)公式化簡,可求出解B.【詳解】由正弦定理可得,即,即有,因為,則,而
15、,所以.故選:A【點睛】此題考查了正弦定理和三角函數(shù)的恒等變形,屬于基礎(chǔ)題.12B【解析】由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,把最優(yōu)解的坐標代入目標函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當(dāng)直經(jīng)過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標函數(shù)的最值,屬于簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過
16、或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.二、填空題:本題共4小題,每小題5分,共20分。13【解析】以為原點,為軸,為軸,過作平面的垂線為軸建立空間直角坐標系,設(shè)點,根據(jù)題中條件得出,進而可求出的最大值,由此能求出三棱錐體積的最大值.【詳解】以為原點,為軸,為軸,過作平面的垂線為軸建立空間直角坐標系,則,設(shè)點,空間中的動點滿足,所以,整理得,當(dāng),時,取最大值,所以,三棱錐的體積為.因此,三棱錐體積的最大值為.故答案為:.【點睛】本題考查三棱錐體積的最大值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題14【解析】代入求解得,再求
17、準線方程即可.【詳解】解:雙曲線經(jīng)過點,解得,即又,故該雙曲線的準線方程為: 故答案為:【點睛】本題主要考查了雙曲線的準線方程求解,屬于基礎(chǔ)題.15【解析】將四面體補充為長寬高分別為的長方體,體對角線即為外接球的直徑,從而得解.【詳解】采用補體法,由空間點坐標可知,該四面體的四個頂點在一個長方體上,該長方體的長寬高分別為,長方體的外接球即為該四面體的外接球,外接球的直徑即為長方體的體對角線,所以球半徑為,體積為.【點睛】本題主要考查了四面體外接球的常用求法:補體法,通過補體得到長方體的外接球從而得解,屬于基礎(chǔ)題.16【解析】由弦的長度最大可知為球的直徑.由向量的線性運用表示出,即可由范圍求得的
18、取值范圍.【詳解】連接,如下圖所示:設(shè)球心為,則當(dāng)弦的長度最大時,為球的直徑,由向量線性運算可知正方體的棱長為2,則球的半徑為1,所以,而所以,即故答案為:.【點睛】本題考查了空間向量線性運算與數(shù)量積的運算,正方體內(nèi)切球性質(zhì)應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)列聯(lián)表見解析,99%;(2),;(3)第二種優(yōu)惠方案更劃算.【解析】(1)根據(jù)已知數(shù)據(jù)得出列聯(lián)表,再根據(jù)獨立性檢驗得出結(jié)論;(2)有數(shù)據(jù)可知,女性中“手機支付族”的概率為,知服從二項分布,即,可求得其期望和方差;(3)若選方案一,則需付款元,若選方案二,設(shè)實際付款元,則的取值為1200
19、,1080,1020,求出實際付款的期望,再比較兩個方案中的付款的金額的大小,可得出選擇的方案.【詳解】(1)由已知得出聯(lián)列表:,所以, 有99%的把握認為“手機支付族”與“性別”有關(guān);(2)有數(shù)據(jù)可知,女性中“手機支付族”的概率為, ,;(3)若選方案一,則需付款元 若選方案二,設(shè)實際付款元,則的取值為1200,1080,1020, 選擇第二種優(yōu)惠方案更劃算【點睛】本題考查獨立性檢驗,二項分布的期望和方差,以及由期望值確定決策方案,屬于中檔題.18(1)見解析(2)見解析【解析】(1)利用導(dǎo)函數(shù)的正負確定函數(shù)的增減.(2) 函數(shù)在有兩個零點,即方程在區(qū)間有兩解, 令通過二次求導(dǎo)確定函數(shù)單調(diào)性
20、證明參數(shù)范圍.【詳解】解:(1)證明:因為, 當(dāng)時,所以在區(qū)間遞減;當(dāng)時,所以,所以在區(qū)間遞增; 且,所以函數(shù)的極小值點為1(2)函數(shù)在有兩個零點,即方程在區(qū)間有兩解, 令,則令,則,所以在單調(diào)遞增, 又, 故存在唯一的,使得, 即, 所以在單調(diào)遞減,在區(qū)間單調(diào)遞增,且, 又因為,所以, 方程關(guān)于的方程在有兩個零點,由的圖象可知,即.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,確定函數(shù)的極值,利用二次求導(dǎo),零點存在性定理確定參數(shù)范圍,屬于難題.19(1)證明見解析(2)【解析】(1)根據(jù)面面垂直的判定定理可知,只需證明平面即可由為菱形可得,連接和與的交點,由等腰三角形性質(zhì)可得,即能證得平面;(2)
21、由題意知,平面,可建立空間直角坐標系,以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸,再分別求出平面的法向量,平面的法向量,即可根據(jù)向量法求出二面角的余弦值【詳解】(1)如圖,設(shè)與相交于點,連接,又為菱形,故,為的中點.又,故.又平面,平面,且,故平面,又平面,所以平面平面.(2)由是等邊三角形,可得,故平面,所以,兩兩垂直.如圖以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.不妨設(shè),則,則,設(shè)為平面的法向量,則即可取,設(shè)為平面的法向量,則即可取,所以.所以二面角的余弦值為0.【點睛】本題主要考查線面垂直的判定定理,面面垂直的判定定理的應(yīng)用,以及利用向量法求二面角,意在考查學(xué)生的直觀想象能力,邏輯推理能力和數(shù)學(xué)運算能力,屬于基礎(chǔ)題20()()7839.3元【解析】()由題意計算x、y的平均值,進而由公式求出回歸系數(shù)b和a,即可寫出回歸直線方程;()由題意計算平均數(shù),得出zN (,),求出日銷量z0.13,0.15) 、0.15,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024美團外賣店配送時效及服務(wù)質(zhì)量合同3篇
- 2025年度體育用品代銷及賽事贊助合同4篇
- 2025年度別墅庭院景觀照明節(jié)能改造與維護合同3篇
- 2024玉石行業(yè)區(qū)塊鏈技術(shù)應(yīng)用與合作合同集錦3篇
- 2024版事業(yè)單位續(xù)簽勞動合同申請書
- 2025年度物流運輸代理服務(wù)合同標準范本4篇
- 2025年度智能電網(wǎng)用電安全出租房屋合同范本4篇
- 2025年分公司設(shè)立與市場開發(fā)合作協(xié)議書4篇
- 建筑垃圾再利用可行性研究報告x
- 2025年電子商務(wù)平臺租賃續(xù)租服務(wù)協(xié)議3篇
- TD/T 1060-2021 自然資源分等定級通則(正式版)
- 人教版二年級下冊口算題大全1000道可打印帶答案
- 《創(chuàng)傷失血性休克中國急診專家共識(2023)》解讀
- 倉庫智能化建設(shè)方案
- 海外市場開拓計劃
- 2024年度國家社會科學(xué)基金項目課題指南
- 供應(yīng)鏈組織架構(gòu)與職能設(shè)置
- 幼兒數(shù)學(xué)益智圖形連線題100題(含完整答案)
- 2024年九省聯(lián)考新高考 數(shù)學(xué)試卷(含答案解析)
- 紅色歷史研學(xué)旅行課程設(shè)計
- 如何避免護理患者投訴
評論
0/150
提交評論