信號與系統(tǒng)奧本海默原版第二章-課件_第1頁
信號與系統(tǒng)奧本海默原版第二章-課件_第2頁
信號與系統(tǒng)奧本海默原版第二章-課件_第3頁
信號與系統(tǒng)奧本海默原版第二章-課件_第4頁
信號與系統(tǒng)奧本海默原版第二章-課件_第5頁
已閱讀5頁,還剩31頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、 2 Linear Time-Invariant Systems2.1 Discrete-time LTI system: The convolution sum2.1.1 The Representation of Discrete-time Signals in Terms of Impulses2. Linear Time-Invariant SystemsIf xn=un, then 1- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2- 2 Linear Time-Invariant Syste 2 Lin

2、ear Time-Invariant Systems2.1.2 The Discrete-time Unit Impulse Response and the Convolution Sum Representation of LTI Systems(1) Unit Impulse(Sample) Response LTIxn=nyn=hn Unit Impulse Response: hn 3- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems(2) Convolution Sum of LTI System LTIx

3、nyn=?Solution:Question: n hnn-k hn-kxkn-k xk hn-k4- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems5- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems6- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems( Convolution Sum )Soor yn = xn * hn(3) Calculation of Conv

4、olution SumTime Inversal: hk h-kTime Shift: h-k hn-kMultiplication: xkhn-kSumming: Example 2.1 2.2 2.3 2.4 2.57- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.2 Continuous-time LTI system: The convolution integral2.2.1 The Representation of Continuous-time Signals in Terms of Impuls

5、esDefine We have the expression: Therefore: 8- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems9- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systemsor 10- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.2.2 The Continuous-time Unit impulse Response and the conv

6、olution Integral Representation of LTI Systems(1) Unit Impulse Response LTIx(t)=(t)y(t)=h(t)(2) The Convolution of LTI System LTIx(t)y(t)=?11- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsA. LTI(t)h(t)x(t)y(t)=?Because of So,we can get ( Convolution Integral ) or y(t) = x(t) * h(t) 1

7、2- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsB. or y(t) = x(t) * h(t) LTI(t)h(t)(t) h(t)( Convolution Integral ) 13- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems14- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems(3) Computation of Convolution Integra

8、l Time Inversal: h() h(- )Time Shift: h(-) h(t- )Multiplication: x()h(t- )Integrating: Example 2.6 2.815- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3 Properties of Linear Time Invariant SystemConvolution formula:h(t)x(t)y(t)=x(t)*h(t)hnxnyn=xn*hn16- 2 Linear Time-Invariant Syste

9、 2 Linear Time-Invariant Systems2.3.1 The Commutative PropertyDiscrete time: xn*hn=hn*xnContinuous time: x(t)*h(t)=h(t)*x(t)h(t)x(t)y(t)=x(t)*h(t)x(t)h(t)y(t)=h(t)*x(t)17- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.2 The Distributive PropertyDiscrete time: xn*h1n+h2n=xn*h1n+xn*

10、h2nContinuous time: x(t)*h1(t)+h2(t)=x(t)*h1(t)+x(t)*h2(t)h1(t)+h2(t)x(t)y(t)=x(t)*h1(t)+h2(t)h1(t)x(t)y(t)=x(t)*h1(t)+x(t)*h2(t)h2(t)Example 2.1018- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.3 The Associative PropertyDiscrete time: xn*h1n*h2n=xn*h1n*h2nContinuous time: x(t)*h

11、1(t)*h2(t)=x(t)*h1(t)*h2(t)h1(t)*h2(t)x(t)y(t)=x(t)*h1(t)*h2(t)h1(t)x(t)y(t)=x(t)*h1(t)*h2(t)h2(t)19- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.4 LTI system with and without MemoryMemoryless system: Discrete time: yn=kxn, hn=kn Continuous time: y(t)=kx(t), h(t)=k (t)k (t) x(t)

12、y(t)=kx(t)=x(t)*k(t)k n xnyn=kxn=xn*knImply that: x(t)* (t)=x(t) and xn* n=xn20- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.5 Invertibility of LTI systemOriginal system: h(t)Reverse system: h1(t)(t) x(t)x(t)*(t)=x(t)So, for the invertible system: h(t)*h1(t)=(t) or hn*h1n=nh(t)

13、x(t)x(t)h1(t) Example 2.11 2.1221- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.6 Causality for LTI systemDiscrete time system satisfy the condition: hn=0 for n0Continuous time system satisfy the condition: h(t)=0 for t022- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Sy

14、stems2.3.7 Stability for LTI system Definition of stability: Every bounded input produces a bounded output. Discrete time system:If |xn|B, the condition for |yn|A is23- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsContinuous time system:If |x(t)|B, the condition for |y(t)|A isExample

15、 2.1324- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.8 The Unit Step Response of LTI systemDiscrete time system:hn nhnunsn=un*hnContinuous time system:h(t) (t)h(t)u(t)s(t)=u(t)*h(t)25- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.4 Causal LTI Systems Described

16、by Differential and Difference EquationDiscrete time system: Differential EquationContinuous time system: Difference Equation26- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.4.1 Linear Constant-Coefficient Differential EquationA general Nth-order linear constant-coefficient differe

17、ntial equation:orand initial condition: y(t0), y(t0), , y(N-1)(t0) ( N values )27- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.4.2 Linear Constant-Coefficient Difference EquationA general Nth-order linear constant-coefficient difference equation:orand initial condition: y0, y-1, ,

18、 y-(N-1) ( N values )Example 2.1528- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.4.3 Block Diagram Representations of First-order Systems Described by Differential and Difference Equation(1) Dicrete time system Basic elements: A. An adder B. Multiplication by a coefficient C. An unit delay29- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsBasic elements: 30- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsExample: yn+ayn-1=bxn 31- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems(2) Contin

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論