版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Discrete Probability DistributionsChapter 5Discrete Probability DistributObjectivesIn this chapter, you learn: The properties of a probability distribution.To compute the expected value and variance of a probability distribution.To compute probabilities from binomial, and Poisson distributions.To us
2、e the binomial, and Poisson distributions to solve business problemsObjectivesIn this chapter, youDefinitionsDiscrete variables produce outcomes that come from a counting process (e.g. number of classes you are taking).Continuous variables produce outcomes that come from a measurement (e.g. your ann
3、ual salary, or your weight).DefinitionsDiscrete variables Types Of VariablesCh. 5Ch. 6Ch. 5Ch. 6Types Of VariablesDiscrete VariableContinuousVariableCh. 5Ch. 6Types Of VariablesCh. 5Ch. 6ChDiscrete VariablesCan only assume a countable number of valuesExamples: Roll a die twiceLet X be the number of
4、times 4 occurs (then X could be 0, 1, or 2 times)Toss a coin 5 times. Let X be the number of heads (then X = 0, 1, 2, 3, 4, or 5)Discrete VariablesCan only assProbability Distribution For A Discrete VariableA probability distribution for a discrete variable is a mutually exclusive listing of all pos
5、sible numerical outcomes for that variable and a probability of occurrence associated with each outcome.Interruptions Per Day In Computer NetworkProbability00.3510.2520.2030.1040.0550.05Probability Distribution For AProbability Distributions Are Often Represented GraphicallyP(X)0.1012345XPr
6、obability Distributions Are Discrete Variables Expected Value (Measuring Center) Expected Value (or mean) of a discrete variable (Weighted Average)Interruptions Per Day In Computer Network (xi)ProbabilityP(X = xi)xiP(X = xi)00.35(0)(0.35) = 0.0010.25(1)(0.25) = 0.2520.20(2)(0.20) = 0.4030.10(3)(0.10
7、) = 0.3040.05(4)(0.05) = 0.2050.05(5)(0.05) = 0.251.00 = E(X) = 1.40Discrete Variables Expected VaVariance of a discrete variableStandard Deviation of a discrete variablewhere:E(X) = Expected value of the discrete variable X xi = the ith outcome of XP(X=xi) = Probability of the ith occurrence of XDi
8、screte Variables: Measuring DispersionVariance of a discrete variablDiscrete Variables: Measuring Dispersion(continued)Interruptions Per Day In Computer Network (xi)ProbabilityP(X = xi)xi E(X)2xi E(X)2P(X = xi)00.35(0 1.4)2 = 1.96 (1.96)(0.35) = 0.68610.25(1 1.4)2 = 0.16 (0.16)(0.25) = 0.04020.20(2
9、1.4)2 = 0.36 (0.36)(0.20) = 0.07230.10(3 1.4)2 = 2.56 (2.56)(0.10) = 0.25640.05 (4 1.4)2 = 6.76 (6.76)(0.05) = 0.33850.05(5 1.4)2 = 12.96(12.96)(0.05) = 0.6482 = 2.04, = 1.4283Discrete Variables: MeasuringProbability DistributionsContinuous Probability DistributionsBinomialPoissonProbability Distrib
10、utionsDiscrete Probability DistributionsNormalCh. 5Ch. 6Probability DistributionsContiBinomial Probability DistributionA fixed number of observations, ne.g., 15 tosses of a coin; ten light bulbs taken from a warehouseEach observation is categorized as to whether or not the “event of interest” occurr
11、ede.g., head or tail in each toss of a coin; defective or not defective light bulbSince these two categories are mutually exclusive and collectively exhaustiveWhen the probability of the event of interest is represented as , then the probability of the event of interest not occurring is 1 - Constant
12、 probability for the event of interest occurring () for each observationProbability of getting a tail is the same each time we toss the coinBinomial Probability DistributBinomial Probability Distribution(continued)Observations are independentThe outcome of one observation does not affect the outcome
13、 of the otherTwo sampling methods deliver independenceInfinite population without replacementFinite population with replacementBinomial Probability DistributPossible Applications for the Binomial DistributionA manufacturing plant labels items as either defective or acceptableA firm bidding for contr
14、acts will either get a contract or notA marketing research firm receives survey responses of “yes I will buy” or “no I will not”New job applicants either accept the offer or reject itPossible Applications for the The Binomial DistributionCounting TechniquesSuppose the event of interest is obtaining
15、heads on the toss of a fair coin. You are to toss the coin three times. In how many ways can you get two heads?Possible ways: HHT, HTH, THH, so there are three ways you can getting two heads.This situation is fairly simple. We need to be able to count the number of ways for more complicated situatio
16、ns.The Binomial DistributionCounCounting TechniquesRule of CombinationsThe number of combinations of selecting x objects out of n objects is where:n! =(n)(n - 1)(n - 2) . . . (2)(1)x! = (X)(X - 1)(X - 2) . . . (2)(1) 0! = 1 (by definition)Counting TechniquesRule of CoCounting TechniquesRule of Combi
17、nationsHow many possible 3 scoop combinations could you create at an ice cream parlor if you have 31 flavors to select from and no flavor can be used more than once in the 3 scoops?The total choices is n = 31, and we select X = 3.Counting TechniquesRule of CoP(X=x|n,) = probability of x events of in
18、terest in n trials, with the probability of an “event of interest” being for each trial x = number of “events of interest” in sample, (x = 0, 1, 2, ., n) n = sample size (number of trials or observations) = probability of “event of interest” P(X=x |n,)nx!nx(1-)xnx!()!=-Example: Flip a coin four time
19、s, let x = # heads:n = 4 = 0.51 - = (1 - 0.5) = 0.5X = 0, 1, 2, 3, 4Binomial Distribution FormulaP(X=x|n,) = probability of x What is the probability of one success in five observations if the probability of an event of interest is 0.1? x = 1, n = 5, and = 0.1Example: Calculating a Binomial Probabil
20、ityWhat is the probability of oneThe Binomial DistributionExampleSuppose the probability of purchasing a defective computer is 0.02. What is the probability of purchasing 2 defective computers in a group of 10? x = 2, n = 10, and = 0.02The Binomial DistributionExamThe Binomial Distribution Shape 0.2
21、.4.6012345xP(X=x|5, 0.1).2.4.6012345xP(X=x|5, 0.5)0The shape of the binomial distribution depends on the values of and nHere, n = 5 and = .1Here, n = 5 and = .5The Binomial Distribution ShapThe Binomial Distribution Using Binomial Tables (Available On Line)n = 10 x=.20=.25=.30=.35=.40=.45=.500123456
22、789100.10740.26840.30200.20130.08810.02640.00550.00080.00010.00000.00000.05630.18770.28160.25030.14600.05840.01620.00310.00040.00000.00000.02820.12110.23350.26680.20010.10290.03680.00900.00140.00010.00000.01350.07250.17570.25220.23770.15360.06890.02120.00430.00050.00000.00600.04030.12090.21500.25080
23、.20070.11150.04250.01060.00160.00010.00250.02070.07630.16650.23840.23400.15960.07460.02290.00420.00030.00100.00980.04390.11720.20510.24610.20510.11720.04390.00980.0010109876543210=.80=.75=.70=.65=.60=.55=.50 xExamples: n = 10, = 0.35, x = 3: P(X = 3|10, 0.35) = 0.2522n = 10, = 0.75, x = 8: P(X = 8|1
24、0, 0.75) = 0.2816The Binomial Distribution UsinBinomial Distribution CharacteristicsMeanVariance and Standard DeviationWheren = sample size = probability of the event of interest for any trial(1 ) = probability of no event of interest for any trialBinomial Distribution CharacteThe Binomial Distribut
25、ionCharacteristics 012345xP(X=x|5, 0.1).2.4.6012345xP(X=x|5, 0.5)0ExamplesThe Binomial DistributionCharBoth Excel & Minitab Can Be Used To Calculate The Binomial DistributionBoth Excel & Minitab Can Be UsThe Poisson DistributionDefinitionsYou use the Poisson distribution when you are interest
26、ed in the number of times an event occurs in a given area of opportunity.An area of opportunity is a continuous unit or interval of time, volume, or such area in which more than one occurrence of an event can occur. The number of scratches in a cars paintThe number of mosquito bites on a personThe n
27、umber of computer crashes in a day The Poisson DistributionDefinThe Poisson DistributionApply the Poisson Distribution when:You wish to count the number of times an event occurs in a given area of opportunityThe probability that an event occurs in one area of opportunity is the same for all areas of
28、 opportunity The number of events that occur in one area of opportunity is independent of the number of events that occur in the other areas of opportunityThe probability that two or more events occur in an area of opportunity approaches zero as the area of opportunity becomes smallerThe average num
29、ber of events per unit is (lambda)The Poisson DistributionApply Poisson Distribution Formulawhere:x = number of events in an area of opportunity = expected number of eventse = base of the natural logarithm system (2.71828.)Poisson Distribution FormulawhPoisson Distribution CharacteristicsMeanVarianc
30、e and Standard Deviationwhere = expected number of eventsPoisson Distribution CharacterUsing Poisson Tables (Available On Line)X00.400.500.600.700.800.90012345670.90480.09050.00450.00020.00000.00000.00000.00000.81870.16370.01640.00110.00010.00000.00000.00000.74080.22220.03330.00330.00030.00000.00000.00000.67030.26810.05360.00720.00070.00010.00000.00000.60650.3033
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024幼兒園租賃合同(包括幼兒園特色課程開(kāi)發(fā)及教學(xué)成果展示)3篇
- 2016-2020年印度尼西亞投資環(huán)境分析及前景預(yù)測(cè)報(bào)告
- 出差管理制度及出差標(biāo)準(zhǔn)
- 2024年租房付款條款3篇
- 2025年度離婚協(xié)議書(shū)定制與婚姻財(cái)產(chǎn)分割法律援助合同3篇
- 2024版消防安裝工程施工合同書(shū)
- 重慶旅游職業(yè)學(xué)院《病原微生物學(xué)實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度15%股權(quán)轉(zhuǎn)讓與市場(chǎng)推廣服務(wù)合同2篇
- 山西大學(xué)《航空計(jì)算機(jī)組成與結(jié)構(gòu)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度餐廳智能化改造承包經(jīng)營(yíng)合同3篇
- 生姜的產(chǎn)地分布
- 普通高中學(xué)業(yè)水平合格性考試(會(huì)考)語(yǔ)文試題(附答案)
- 2021年國(guó)家公務(wù)員考試申論試題及答案(地市級(jí))
- 2020年10月自考00020高等數(shù)學(xué)一高數(shù)一試題及答案含評(píng)分標(biāo)準(zhǔn)
- 2023年資產(chǎn)負(fù)債表模板
- GB/T 10058-2023電梯技術(shù)條件
- (完整word版)酒店流水單
- 校服采購(gòu)?fù)稑?biāo)方案
- 居民健康檔案管理培訓(xùn)課件
- 學(xué)校食堂食品安全管理25項(xiàng)制度
- 班主任經(jīng)驗(yàn)交流PPT
評(píng)論
0/150
提交評(píng)論