




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2023學(xué)年高考數(shù)學(xué)模擬測(cè)試卷注意事項(xiàng):1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并
2、交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1將函數(shù)圖象上所有點(diǎn)向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,如果在區(qū)間上單調(diào)遞減,那么實(shí)數(shù)的最大值為( )ABCD2若兩個(gè)非零向量、滿足,且,則與夾角的余弦值為( )ABCD3已知向量滿足,且與的夾角為,則( )ABCD4定義在R上的偶函數(shù)滿足,且在區(qū)間上單調(diào)遞減,已知是銳角三角形的兩個(gè)內(nèi)角,則的大小關(guān)系是( )ABCD以上情況均有可能5在平面直角坐標(biāo)系中,已知是圓上兩個(gè)動(dòng)點(diǎn),且滿足,設(shè)到直線的距離之和的最大值為,若數(shù)列的前項(xiàng)和恒成立,則實(shí)數(shù)的取值范圍是( )ABCD6設(shè)a,b都是不等于1的
3、正數(shù),則“”是“”的()A充要條件B充分不必要條件C必要不充分條件D既不充分也不必要條件7已知i是虛數(shù)單位,則1+iiA-12+32i8已知函數(shù),將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于軸對(duì)稱,則的最小值是( )ABCD9已知銳角滿足則( )ABCD10要得到函數(shù)的圖象,只需將函數(shù)的圖象( )A向右平移個(gè)單位B向右平移個(gè)單位C向左平移個(gè)單位D向左平移個(gè)單位11已知函數(shù),當(dāng)時(shí),的取值范圍為,則實(shí)數(shù)m的取值范圍是( )ABCD12已知是雙曲線的左、右焦點(diǎn),是的左、右頂點(diǎn),點(diǎn)在過(guò)且斜率為的直線上,為等腰三角形,則的漸近線方程為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。1
4、3已知,復(fù)數(shù)且(為虛數(shù)單位),則_,_14已知關(guān)于x的不等式(axa24)(x4)0的解集為A,且A中共含有n個(gè)整數(shù),則當(dāng)n最小時(shí)實(shí)數(shù)a的值為_(kāi)15展開(kāi)式中的系數(shù)為_(kāi).16某外商計(jì)劃在個(gè)候選城市中投資個(gè)不同的項(xiàng)目,且在同一個(gè)城市投資的項(xiàng)目不超過(guò)個(gè),則該外商不同的投資方案有_種三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)設(shè)函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.18(12分)已知數(shù)列中,(實(shí)數(shù)為常數(shù)),是其前項(xiàng)和,且數(shù)列是等比數(shù)列,恰為與的等比中項(xiàng)(1)證明:數(shù)列是等差數(shù)列; (2)求數(shù)列的通項(xiàng)公式;(3)若,當(dāng)時(shí),的前項(xiàng)和為,求證:對(duì)任意,都有19(
5、12分)在四棱錐中,底面是邊長(zhǎng)為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是直線上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求面與面所成二面角的正弦值.20(12分)如圖,正方形是某城市的一個(gè)區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統(tǒng)一設(shè)置如下:先直行綠燈30秒,再左轉(zhuǎn)綠燈30秒,然后是紅燈1分鐘,右轉(zhuǎn)不受紅綠燈影響,這樣獨(dú)立的循環(huán)運(yùn)行.小明上學(xué)需沿街道從處騎行到處(不考慮處的紅綠燈),出發(fā)時(shí)的兩條路線()等可能選擇,且總是走最近路線.(1)請(qǐng)問(wèn)小明上學(xué)的路線有多少種不同可能?(2)在保證通過(guò)紅綠燈路口用時(shí)最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經(jīng)過(guò)處
6、,且全程不等紅綠燈的概率;(3)請(qǐng)你根據(jù)每條可能的路線中等紅綠燈的次數(shù)的均值,為小明設(shè)計(jì)一條最佳的上學(xué)路線,且應(yīng)盡量避開(kāi)哪條路線?21(12分)甲、乙、丙三名射擊運(yùn)動(dòng)員射中目標(biāo)的概率分別為,三人各射擊一次,擊中目標(biāo)的次數(shù)記為.(1)求的分布列及數(shù)學(xué)期望;(2)在概率(=0,1,2,3)中, 若的值最大, 求實(shí)數(shù)的取值范圍.22(10分)在一次電視節(jié)目的答題游戲中,題型為選擇題,只有“A”和“B”兩種結(jié)果,其中某選手選擇正確的概率為p,選擇錯(cuò)誤的概率為q,若選擇正確則加1分,選擇錯(cuò)誤則減1分,現(xiàn)記“該選手答完n道題后總得分為”.(1)當(dāng)時(shí),記,求的分布列及數(shù)學(xué)期望;(2)當(dāng),時(shí),求且的概率.20
7、23學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【答案解析】根據(jù)條件先求出的解析式,結(jié)合三角函數(shù)的單調(diào)性進(jìn)行求解即可.【題目詳解】將函數(shù)圖象上所有點(diǎn)向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則,設(shè),則當(dāng)時(shí),即,要使在區(qū)間上單調(diào)遞減,則得,得,即實(shí)數(shù)的最大值為,故選:B.【答案點(diǎn)睛】本小題主要考查三角函數(shù)圖象變換,考查根據(jù)三角函數(shù)的單調(diào)性求參數(shù),屬于中檔題.2、A【答案解析】設(shè)平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運(yùn)算律可求得的值,即為所求.【題目詳解】設(shè)平面向量與的夾
8、角為,可得,在等式兩邊平方得,化簡(jiǎn)得.故選:A.【答案點(diǎn)睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運(yùn)算性質(zhì)的應(yīng)用,考查計(jì)算能力,屬于中等題.3、A【答案解析】根據(jù)向量的運(yùn)算法則展開(kāi)后利用數(shù)量積的性質(zhì)即可.【題目詳解】.故選:A.【答案點(diǎn)睛】本題主要考查數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.4、B【答案解析】由已知可求得函數(shù)的周期,根據(jù)周期及偶函數(shù)的對(duì)稱性可求在上的單調(diào)性,結(jié)合三角函數(shù)的性質(zhì)即可比較【題目詳解】由可得,即函數(shù)的周期,因?yàn)樵趨^(qū)間上單調(diào)遞減,故函數(shù)在區(qū)間上單調(diào)遞減,根據(jù)偶函數(shù)的對(duì)稱性可知,在上單調(diào)遞增,因?yàn)?,是銳角三角形的兩個(gè)內(nèi)角,所以且即,所以即,故選:【答案點(diǎn)睛】本題主
9、要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵5、B【答案解析】由于到直線的距離和等于中點(diǎn)到此直線距離的二倍,所以只需求中點(diǎn)到此直線距離的最大值即可。再得到中點(diǎn)的軌跡是圓,再通過(guò)此圓的圓心到直線距離,半徑和中點(diǎn)到此直線距離的最大值的關(guān)系可以求出。再通過(guò)裂項(xiàng)的方法求的前項(xiàng)和,即可通過(guò)不等式來(lái)求解的取值范圍.【題目詳解】由,得,.設(shè)線段的中點(diǎn),則,在圓上,到直線的距離之和等于點(diǎn)到該直線的距離的兩倍,點(diǎn)到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,.故選:【答案點(diǎn)睛】本題考查了向量數(shù)量積,點(diǎn)到直線的距離,數(shù)列求和等知識(shí),是一道不錯(cuò)的綜合題.6
10、、C【答案解析】根據(jù)對(duì)數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)求解a,b的范圍,再利用充分必要條件的定義判斷即可【題目詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C【答案點(diǎn)睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數(shù),對(duì)數(shù)不等式的解法,是基礎(chǔ)題7、D【答案解析】利用復(fù)數(shù)的運(yùn)算法則即可化簡(jiǎn)得出結(jié)果【題目詳解】1+i故選D【答案點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,屬于基礎(chǔ)題。8、A【答案解析】化簡(jiǎn)為,求出它的圖象向左平移個(gè)單位長(zhǎng)度后的圖象的函數(shù)表達(dá)式,利用所得到的圖象關(guān)于軸對(duì)稱列方程即可求得,問(wèn)題得解。【題目詳解】函數(shù)可化為:,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度
11、后,得到函數(shù)的圖象,又所得到的圖象關(guān)于軸對(duì)稱,所以,解得:,即:,又,所以.故選:A.【答案點(diǎn)睛】本題主要考查了兩角和的正弦公式及三角函數(shù)圖象的平移、性質(zhì)等知識(shí),考查轉(zhuǎn)化能力,屬于中檔題。9、C【答案解析】利用代入計(jì)算即可.【題目詳解】由已知,因?yàn)殇J角,所以,即.故選:C.【答案點(diǎn)睛】本題考查二倍角的正弦、余弦公式的應(yīng)用,考查學(xué)生的運(yùn)算能力,是一道基礎(chǔ)題.10、D【答案解析】直接根據(jù)三角函數(shù)的圖象平移規(guī)則得出正確的結(jié)論即可;【題目詳解】解:函數(shù),要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個(gè)單位故選:D【答案點(diǎn)睛】本題考查三角函數(shù)圖象平移的應(yīng)用問(wèn)題,屬于基礎(chǔ)題11、C【答案解析】求導(dǎo)分析函數(shù)在時(shí)
12、的單調(diào)性、極值,可得時(shí),滿足題意,再在時(shí),求解的x的范圍,綜合可得結(jié)果.【題目詳解】當(dāng)時(shí),令,則;,則,函數(shù)在單調(diào)遞增,在單調(diào)遞減.函數(shù)在處取得極大值為,時(shí),的取值范圍為,又當(dāng)時(shí),令,則,即,綜上所述,的取值范圍為.故選C.【答案點(diǎn)睛】本題考查了利用導(dǎo)數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質(zhì),屬于難題.12、D【答案解析】根據(jù)為等腰三角形,可求出點(diǎn)P的坐標(biāo),又由的斜率為可得出關(guān)系,即可求出漸近線斜率得解.【題目詳解】如圖,因?yàn)闉榈妊切?,所以?,又,解得,所以雙曲線的漸近線方程為,故選:D【答案點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),屬于中檔題.二、填空題:本題共4小題,每小題5分,共
13、20分。13、 【答案解析】復(fù)數(shù)且,故答案為,14、-1【答案解析】討論三種情況,a0時(shí),根據(jù)均值不等式得到a(a)14,計(jì)算等號(hào)成立的條件得到答案.【題目詳解】已知關(guān)于x的不等式(axa14)(x4)0,a0時(shí),x(a)(x4)0,其中a0,故解集為(a,4),由于a(a)14,當(dāng)且僅當(dāng)a,即a1時(shí)取等號(hào),a的最大值為4,當(dāng)且僅當(dāng)a4時(shí),A中共含有最少個(gè)整數(shù),此時(shí)實(shí)數(shù)a的值為1;a0時(shí),4(x4)0,解集為(,4),整數(shù)解有無(wú)窮多,故a0不符合條件; a0時(shí),x(a)(x4)0,其中a4,故解集為(,4)(a,+),整數(shù)解有無(wú)窮多,故a0不符合條件;綜上所述,a1故答案為:1【答案點(diǎn)睛】本題
14、考查了解不等式,均值不等式,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.15、【答案解析】變換,根據(jù)二項(xiàng)式定理計(jì)算得到答案.【題目詳解】的展開(kāi)式的通項(xiàng)為:,取和,計(jì)算得到系數(shù)為:.故答案為:.【答案點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.16、60【答案解析】試題分析:每個(gè)城市投資1個(gè)項(xiàng)目有種,有一個(gè)城市投資2個(gè)有種,投資方案共種.考點(diǎn):排列組合.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)整數(shù)的最大值為;(2)見(jiàn)解析.【答案解析】(1)將不等式變形為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性并確定其最值,從而得到正整數(shù)的最大值;(2)根據(jù)(1)的結(jié)論得
15、到,利用不等式的基本性質(zhì)可證得結(jié)論.【題目詳解】(1)由得,令,令,對(duì)恒成立,所以,函數(shù)在上單調(diào)遞增,故存在使得,即,從而當(dāng)時(shí),有,所以,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),有,所以,函數(shù)在上單調(diào)遞減.所以,因此,整數(shù)的最大值為;(2)由(1)知恒成立,令則,上述等式全部相加得,所以,因此,【答案點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性、最值中的應(yīng)用,以及放縮法證明不等式的技巧,屬于難題18、(1)見(jiàn)解析(2)(3)見(jiàn)解析【答案解析】(1)令可得,即得到,再利用通項(xiàng)公式和前n項(xiàng)和的關(guān)系求解, (2)由(1)知,設(shè)等比數(shù)列的公比為,所以,再根據(jù)恰為與的等比中項(xiàng)求解,(3)由(2)得到時(shí),求得,再代入證明。【題目詳解】
16、(1)解:令可得,即所以時(shí),可得,當(dāng)時(shí),所以顯然當(dāng)時(shí),滿足上式所以,所以數(shù)列是等差數(shù)列, (2)由(1)知,設(shè)等比數(shù)列的公比為,所以,恰為與的等比中項(xiàng),所以,解得,所以(3)時(shí),而時(shí),所以當(dāng)時(shí),.當(dāng)時(shí),對(duì)任意,都有,【答案點(diǎn)睛】本題主要考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和的關(guān)系,等差數(shù)列,等比數(shù)列的定義和性質(zhì)以及數(shù)列放縮的方法,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題,19、(1)證明見(jiàn)解析(2)【答案解析】(1)取中點(diǎn),連接,根據(jù)菱形的性質(zhì),結(jié)合線面垂直的判定定理和性質(zhì)進(jìn)行證明即可;(2)根據(jù)面面垂直的判定定理和性質(zhì)定理,可以確定點(diǎn)到直線的距離即為點(diǎn)到平面的距離,結(jié)合垂線段的性質(zhì)可以確定點(diǎn)到
17、平面的距離最大,最大值為1.以為坐標(biāo)原點(diǎn),直線分別為軸建立空間直角坐標(biāo)系.利用空間向量夾角公式,結(jié)合同角的三角函數(shù)關(guān)系式進(jìn)行求解即可.【題目詳解】(1)證明:取中點(diǎn),連接,因?yàn)樗倪呅螢榱庑吻?所以,因?yàn)?,所以,又,所以平面,因?yàn)槠矫?,所?同理可證,因?yàn)?,所以平?(2)解:由(1)得平面,所以平面平面,平面平面.所以點(diǎn)到直線的距離即為點(diǎn)到平面的距離.過(guò)作的垂線段,在所有的垂線段中長(zhǎng)度最大的為,此時(shí)必過(guò)的中點(diǎn),因?yàn)闉橹悬c(diǎn),所以此時(shí),點(diǎn)到平面的距離最大,最大值為1.以為坐標(biāo)原點(diǎn),直線分別為軸建立空間直角坐標(biāo)系.則所以平面的一個(gè)法向量為,設(shè)平面的法向量為,則即取,則,所以,所以面與面所成二面角的正
18、弦值為.【答案點(diǎn)睛】本題考查了線面垂直的判定定理和性質(zhì)的應(yīng)用,考查了二面角的向量求法,考查了推理論證能力和數(shù)學(xué)運(yùn)算能力.20、(1)6種;(2);(3).【答案解析】(1)從4條街中選擇2條橫街即可;(2)小明途中恰好經(jīng)過(guò)處,共有4條路線,即,分別對(duì)4條路線進(jìn)行分析計(jì)算概率;(3)分別對(duì)小明上學(xué)的6條路線進(jìn)行分析求均值,均值越大的應(yīng)避免.【題目詳解】(1)路途中可以看成必須走過(guò)2條橫街和2條豎街,即從4條街中選擇2條橫街即可,所以路線總數(shù)為條. (2)小明途中恰好經(jīng)過(guò)處,共有4條路線:當(dāng)走時(shí),全程不等紅綠燈的概率;當(dāng)走時(shí),全程不等紅綠燈的概率;當(dāng)走時(shí),全程不等紅綠燈的概率;當(dāng)走時(shí),全程不等紅綠燈的概率.所以途中恰好經(jīng)過(guò)處,且全程不等信號(hào)燈的概率.(3)設(shè)以下第條的路線等信號(hào)燈的次數(shù)為變量,則第一條:,則;第二條:,則;另外四條路線:;,則綜上,小明上學(xué)的最佳路線為;應(yīng)盡量避開(kāi).【答案點(diǎn)睛】本題考查概率在實(shí)際生活中的綜合應(yīng)用問(wèn)題,考查學(xué)生邏輯推理與運(yùn)算能力,是一
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年羽毛球插毛機(jī)項(xiàng)目可行性研究報(bào)告
- 2025年羊絨雙面呢項(xiàng)目可行性研究報(bào)告
- 金屬包裝容器用附件企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報(bào)告
- 鐵路隧道行業(yè)直播電商戰(zhàn)略研究報(bào)告
- 造紙用蒸煮設(shè)備行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 鐵鋁酸鹽水泥行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 水泥袋行業(yè)直播電商戰(zhàn)略研究報(bào)告
- 鐵路鋪軌橋梁工程行業(yè)直播電商戰(zhàn)略研究報(bào)告
- 混凝土路緣石行業(yè)直播電商戰(zhàn)略研究報(bào)告
- 金屬面巖棉夾芯板企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報(bào)告
- 分泌性中耳炎教學(xué)課件
- 浙江省杭州市蕭山區(qū)第二學(xué)期六年級(jí)語(yǔ)文期中試題(含答案)
- 江蘇省2022年五年制專轉(zhuǎn)本英語(yǔ)真題
- 普通地質(zhì)學(xué)教材
- 2020農(nóng)村人居環(huán)境綜合整治項(xiàng)目可行性研究報(bào)告
- 《工業(yè)控制網(wǎng)絡(luò)及組態(tài)技術(shù)》教案
- 青春期女生健康講座
- 年產(chǎn)2萬(wàn)噸碳酸二甲酯合成項(xiàng)目初步設(shè)計(jì)說(shuō)明書(shū)
- 【超星爾雅學(xué)習(xí)通】西方美術(shù)欣賞網(wǎng)課章節(jié)答案
- 廣東省五年一貫制語(yǔ)文試卷
- 紙箱廠檢驗(yàn)崗位職責(zé)多篇
評(píng)論
0/150
提交評(píng)論