薄膜太陽能電池(thin film solar cell)課件_第1頁
薄膜太陽能電池(thin film solar cell)課件_第2頁
薄膜太陽能電池(thin film solar cell)課件_第3頁
薄膜太陽能電池(thin film solar cell)課件_第4頁
薄膜太陽能電池(thin film solar cell)課件_第5頁
已閱讀5頁,還剩65頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、第八章 薄膜太陽能電池授課教師:黃俊杰薄膜太陽能電池的種類非晶硅(Amorphus Silicon, a-Si)微晶硅(Nanocrystalline Silicon,nc-Si,or Microcrystalline Silicon,uc-Si)CIS/CIGS(銅銦硒化物)CdTe(碲化鎘)GaAs Multijuction(多接面砷化鎵)色素敏化染料(Dye-Sensitized Solar Cell)有機(jī)導(dǎo)電高分子(Organic/polymer solar cells)太陽能電池市場現(xiàn)況太陽能電池效演進(jìn)非晶硅(Amorphus Silicon, a-Si) 數(shù)據(jù)源:BP 2002、W

2、orld Nuclear Association是發(fā)展最完整的薄膜式太陽能電池。其結(jié)構(gòu)通常為p-i-n(或n-i-p)偶及型式,p層跟n層主要座為建立內(nèi)部電場,I層則由非晶系硅構(gòu)成。非晶硅的優(yōu)點(diǎn)在于對(duì)于可見光譜的吸光能力很強(qiáng),而且利用濺鍍或是化學(xué)氣相沉積方式生成薄膜的生產(chǎn)方式成熟且成本低廉,材料成本相對(duì)于其他化合物半導(dǎo)體材料也便宜許多;不過缺點(diǎn)則有轉(zhuǎn)換效率低(約57%),以及會(huì)產(chǎn)生嚴(yán)重的光劣化現(xiàn)象的問題,因此無法打入太陽能發(fā)電市場,而多應(yīng)用于小功率的消費(fèi)性電子產(chǎn)品市場。不過在新一代的非晶硅多接面太陽能電池(MultijuctionCell)已經(jīng)能夠大幅改善純非晶硅太陽電池的缺點(diǎn),轉(zhuǎn)換效率可提升

3、到68%,使用壽命也獲得提升。未在具有成本低廉的優(yōu)勢之下,仍將是未薄膜太陽能電池的主流之一。CIS/CIGS(銅銦硒化物)CIS(CopperIndiumDiselenide)或是CIGS(CopperIndiumGalliumDiselenide)都屬于化合物半導(dǎo)體。這兩種材料的吸光(光譜)范圍很廣,而且穩(wěn)定性也相當(dāng)好。轉(zhuǎn)換效率方面,若是利用聚光裝置的輔助,目前轉(zhuǎn)換效率已經(jīng)可達(dá)30%,標(biāo)準(zhǔn)環(huán)境測試下最高也已經(jīng)可達(dá)到19.5%,足以媲美單晶硅太陽電池的最佳轉(zhuǎn)換效率。在大面積制程上,采用軟性塑料基板的最佳轉(zhuǎn)換效率也已經(jīng)達(dá)到14.1%。由于穩(wěn)定性和轉(zhuǎn)換效率都已經(jīng)相當(dāng)優(yōu)異,因此被視為是未最有發(fā)展?jié)摿?/p>

4、的薄膜太陽能電池種類之一。CdTe(碲化鎘)CdTe同樣屬于化合物半導(dǎo)體,電池轉(zhuǎn)換效率也不差:若使用耐高溫(600C)的硼玻璃作為基板轉(zhuǎn)換效率可達(dá)16%,而使用不耐高溫但是成本較低的鈉玻璃做基板也可達(dá)到12%的轉(zhuǎn)換效率,轉(zhuǎn)換效率遠(yuǎn)優(yōu)于非晶硅材料。此外,CdTe是二元化合物,在薄膜制程上遠(yuǎn)較CIS或CIGS容易控制,再加上可應(yīng)用多種快速成膜技術(shù)(如蒸鍍法),模塊化生產(chǎn)容易,因此容易應(yīng)用于大面積建材,目前已經(jīng)有商業(yè)化產(chǎn)品在市場營銷,轉(zhuǎn)換效率約11%。不過,雖然CdTe技術(shù)有以上優(yōu)點(diǎn),但是因?yàn)殒k已經(jīng)是各國管制的高污染性重金屬,因此此種材料技術(shù)未發(fā)展前景仍有陰影存在。染料敏化染料(Dye-Sensit

5、ized Solar Cell)染料敏化感染料電池是太陽能電池中相當(dāng)新穎的技術(shù),產(chǎn)品是由透明導(dǎo)電基板、二氧化鈦(TiO2)奈米微粒薄膜、染料(光敏化劑)、電解質(zhì)和ITO電極所組成。此種太陽能電池的優(yōu)點(diǎn)在于二氧化鈦和染料的材料成本都相對(duì)便宜,又可以利用印刷的方法大量制造,基板材料也可更多元化。不過目前主要缺點(diǎn)一是在于轉(zhuǎn)換效率仍然相當(dāng)?shù)?平均約在78%,實(shí)驗(yàn)室產(chǎn)品可達(dá)10%),且在UV照射和高熱下會(huì)出現(xiàn)嚴(yán)重的光劣化現(xiàn)象,二是在于封裝過程較為困難(主要是因?yàn)槠渲械碾娊赓|(zhì)的影響),因此目前仍然是以實(shí)驗(yàn)室產(chǎn)品為主。然而,基于其低廉成本以及廣泛應(yīng)用層面的吸引力,多家實(shí)驗(yàn)機(jī)構(gòu)仍然在積極進(jìn)行技術(shù)的突破。有機(jī)導(dǎo)

6、電高分子(Organic/polymer solar cells)有機(jī)導(dǎo)電高分子太陽能電池是直接利用有機(jī)高分子半導(dǎo)體薄膜(通常厚約為100nm)作為感光和發(fā)電材料。此種技術(shù)共有兩大優(yōu)點(diǎn),一在于薄膜制程容易(可用噴墨、浸泡涂布等方式),而且可利用化學(xué)合成技術(shù)改變分子結(jié)構(gòu),以提升效率,另一優(yōu)點(diǎn)是采用軟性塑料作為基板材料,因此質(zhì)輕,且具有高的可撓性。目前市面上已經(jīng)有多家公司推出產(chǎn)品,應(yīng)用在可攜式電子產(chǎn)品如NB、PDA的戶外充電上面,市場領(lǐng)導(dǎo)者則是美國Konarka公司。不過,由于轉(zhuǎn)換效率過低(約45%)的最大缺點(diǎn),因此此種太陽能電池的未發(fā)展市場應(yīng)該是結(jié)合電子產(chǎn)品的整合性應(yīng)用,而非大規(guī)模的太陽能發(fā)電。

7、非晶硅薄膜太陽電池構(gòu)造Need of raw materialThin-film solar cells非晶硅薄膜太陽電池制造程(玻璃基材)非晶硅薄膜太陽電池制造程(玻璃基材)Thin film Si:H challengesIncreasing deposition rate (from 0.1 nm/s to 10 nm/s!), including compatible doped layersEnhance the Isc (absorption, light trapping)Improving stabilized device performanceUnderstanding f

8、undamental physics: low Voc, shunt behavior, light-induced defect creation非晶硅薄膜太陽電池“Amorphous Si:H Thin-film Solar Cell”UniSolar and薄膜太陽能電池 CIGS薄膜電池此型有種:一種含銅銦硒三元素(簡稱CISe),一種含銅銦鎵硒四元素(簡稱CIGS)。由于其高光電效及低材成本,被許多人看好。在實(shí)驗(yàn)室完成的CIGS光電池,光電效最高可達(dá)約19.88,就模塊而言,最高亦可達(dá)約13(CISe約10%)。CIGS隨著銦鎵含的同,其光吸收范圍可從1.02ev至1.68ev,此項(xiàng)

9、特征可加以用于多層堆棧模塊,已近一步提升電池組織效能。此外由于高吸光效(104105-1),所需光電材厚需超過1m,99以上的光子均可被吸收,因此一般粗估產(chǎn)制造時(shí),所需半導(dǎo)體原物可能僅只US$0.03/W。薄膜太陽能電池 CIGS薄膜電池CIGS太陽能電池組件結(jié)構(gòu)演進(jìn)CIGS太陽能電池組件制作程CIGS太陽能電池-真空制程真空涂布制程- Co-evaporation真空涂布制程- SputteringCIGS太陽能電池-非真空制程非真空涂布制程- electrodeposition非真空涂布制程-Metal Oxide InkCIS薄膜太陽電池“Copper Indium Diselenide

10、 Thin-film Solar Cell ”245-kW rooftop, thin-film CIS-based solar electric array, Camarillo, California (Shell Solar Industries.)85-kW thin-film CIS-based BIPV facade, North Wales, UK結(jié)論各型太陽能電池的市場需求將與日遽增,且各技術(shù)皆以低成本和提高光電轉(zhuǎn)換效為研究方向。其中又以薄膜太陽能電池為現(xiàn)階段最具有取代硅晶太陽能電池的可能。薄膜太陽電池中,CIGS是目前具有最高效的電池之一?,F(xiàn)階段CIGS電池主要產(chǎn)技術(shù)仍以真空

11、制程技術(shù)為主,但難以克服大面積及低成本的問題。 CIGS非真空制程技術(shù)雖具有低成本以及提高材使用的優(yōu)點(diǎn),但各方式具有難以克服的關(guān)鍵問題皆仍待解決。如CIGS晶成長等。結(jié)瓶頸CIGS薄膜太陽能電池雖具有高效、低成本、大面積與可撓性等潛優(yōu)勢,但還有許多需要克服的問題接踵而:制程復(fù)雜、技術(shù)選擇百家爭鳴,且供應(yīng)相當(dāng)分歧,各站并無制式化設(shè)備放大制程之均質(zhì)性佳,變化大 dopant ratio thin window layer Low Voc resulting in increased area loss系統(tǒng)化的研究與實(shí)驗(yàn)據(jù)十分缺乏許多關(guān)鍵點(diǎn)無定,如:組成成分、結(jié)構(gòu)、晶界、各層間之接口等關(guān)鍵原的缺乏

12、銦元素也是一項(xiàng)潛在隱憂,銦的天然蘊(yùn)藏相當(dāng)有限,國外曾計(jì)算,如以效10的電池計(jì)算,人如全面使用CIGS光電池發(fā)電供應(yīng)能源,可能只有光景可,銦的天然蘊(yùn)藏相當(dāng)有限,國外曾計(jì)算,如以效10的電池計(jì)算,人如全面使用CIGS光電池發(fā)電供應(yīng)能源,可能只有光景地?zé)酑dTe Film DepositionCdTe Film DepositionCdTe Film DepositionRooftopCdTe薄膜太陽電池“Cadmium TellurideThin-film Solar Cell”Katzenbach Juwi Memmingen SAGSAGFirst Solar -CdTe RooftopC-S

13、i Technology in Historic Perspective全球PV前十大廠商臺(tái)灣太陽光電產(chǎn)業(yè)鏈分布概況太陽光電產(chǎn)值預(yù)期達(dá)成規(guī)模光電高分子太陽能電池特征發(fā)展不久原理:利用不同氧化還原型聚合物的不同氧化還原位勢,在導(dǎo)電材料(電極)表面進(jìn)行多層復(fù)合,外層聚合物的還原電為較高,電子轉(zhuǎn)移方向只能由內(nèi)層向外層轉(zhuǎn)移;另一電極正好相反奈米晶色素增感solar cellDSSC進(jìn)展Why organic solar cell? Ease of fabrication for large area from solutionTransparentConformal and flexibleLow c

14、ost of manufacturingDye-Sensitized Solar CellMechanisms of the DSSCh :photon absorptiona :electron injectionb :recombinationc : e- transport and collection at conducting substrate d :I- oxidatione :I3- reductionf :ion transportBasic mechanisms in a DSSCI/I3- redox electrolytedyehTiO2TCOCounter elect

15、rodeabcdef2e- + I33I-3I-I3- + 2e-E-An Introduction to its Principle, Materials, Processes, and Recent R&DsDye-sensitized Solar Cell(DSSC):Principle ofDye-Sensitized Solar cellsDye-Sensitized Solar CellLow photocurrent could be the result ofInefficient light harvesting by the dyeInefficient charge in

16、jection into TiO2Inefficient collection of injection electronGratzel, Nature, 2001Special Features of a DSSCSemiconductor not excited directlyPhoto carrier generation & transportation arewell separated the probability of recombination can be drastically reduced.Positive charge transportvia ion trans

17、port in the electrolyte, rather than hole conditionNo electric field, electron transfer has been described as diffusionJn= nnEcb+ q DnnNanoparticle structureTCOCounter electrodeTiO2/ dye / electrolyte(I-/I3-)glasse-0Performance of Photovoltaic and Dye-sensitized Solar CellsType of cellEfficiency %(c

18、ell)Efficiency %(module)Research and technology needsCrystalline silicon2410-15Higher production yields, lowering of cost and energy contentMulti-crystalline silicon189-12Lower manufacturing cost and complexityAmorphous silicon137Lower production costs, increase production volume and stabilityDye-se

19、nsitized nano-structured materials10-117Improve efficiency and high-temperature stability, scale up production-Their functions, principles, characteristics, materials, processes, and recent R&DsPart II:Major Components in a DSSC The TCO Electrode -one of the major components in a DSSC Role of the TC

20、O electrode in a DSSCElectronstransportation and collectionCharacteristicsHightransmittance in visible region()Highelectrical conductivity()Thermal endurance ()Corrosion resistanceEnergy level not higher than nanoparticle oxide() present the issue still for improvinge-ITRCommon Materials and Process

21、es of the TCO Electrodes Materials:ITO, ZnS, ZnO, SnO2(energy gap higher than photo energy in visible region)Processes:Sputtering depositionPlasma ion assisted depositionRef (3)Recent R&Ds of TCO Electrode in DSSCMethod improvingContentsEvaluationRef.Design*Oxide/metal/oxide structure1/ tot= 2/ oxid

22、e+ 1/ metal Ref.(465)Material* TiO2 replace ITO* AgCu replace Ag as metal interlayer Thermal enduranceRe. f(7)Ref. (8)Processes*Heat treatment*PIAD ; TAvoid high tempRef. (9) Ref. (10)Analysis*Multi-layer combination appropriate arrangement of the n & t of each layerR ; TOptic simulationRef. (11) Re

23、f. (12)Incident =Reflection + Transmittance +AbsorptionPassage of Light Through a Material related torefractive index,thickness, particle sizeDepend onEgParticle size effectInterference effectdSubstraten1nsn0Nano-material transmit lightMicro-material scatter lightRef (14)Ref (13)dyedye -one of the m

24、ajor components in a DSSC Role of dye in a DSSCPhotoexciting & injecting electrons into the conduction band of the oxide CharacteristicsAbsorb all light below 900nm ()Molecular dispersion in nanostructure oxide ()Carry attachment group(eg. carboxylate or phosphonate) tofirmly graft to the oxide surf

25、aceThe Energy level ofexcited state higher than conduction band of oxide The redox potential sufficient high to be regenerated via electron from the electrolyteSustain high cycle usageTiO2Ru2+Ru2+*Ru3+e-e-hCommon Materials of the DyeGeneral structure: ML2X2( L: 2.2-ipyridyl-4,4-dicarboxylic;M: Ru or

26、 Os;X: halide,-CN,-SCN )N3Absorption Spectrum of N3 and dark grayDark grayAM1.5 solar spectrum400500600700800900nmA00.51.01.52.0N3Dark grayRef (14)Recent R&Ds of Dye in DSSCMethod improvingContentsEvaluationRef.Design*Mix different dyes Broadband absorptionRef. (15)Material*Different types of ligand

27、Explore:e- donation process, charge recombination, sensitizer regenerationRef. (16)Oxide Film-one of the major components in a DSSCRole of the oxide in a DSSCReceive electrons from the dyeEfficient transport electrons in the media CharacteristicsUltra fine structure(nm-crystal, mesoporous) interconn

28、ected ()Good electrical conduction properties ()Conduction band edge is more negative than HUMO of the dye ultra fine structure enable.TiO2 nanoparticlesRef (17)Ref (3)IPCE%001000.15300800nm300800nmSingle crystal anataseNanocrystal anataseCommon Materials and Processes of the Oxide filmMaterial:TiO2

29、(cheap, non-toxic), ZnO, Fe2O3, Nb2O5, WO3, Ta2O5, CdS, CdSeCommon processes:TiO2filmTiO2particles (Finely divided monodispersed colloidal)Coating,sinteringTi saultProcess parameters:Precursor chemistryHydrothermal growth TempBinder additionSintering conditionControl: hydrolysis and condensation kin

30、eticsFactors influence properties:Material contentChemical compositionStructureSurface morphologyGrain size, porosity pore size distributionCrystalline form (anatase,rutile.)Hydrolysissolvent+binder(1-20m)Electron Transport in the DSSC- An important factor affecting IPCEDe in the porous film De in t

31、he bulk crystalMulti-trapping model: electron transport is mediated by the conduction band and is interrupted by trapping.The traps could be formed byoxygen defects,amorphous layer on the particle surface,chemical surrounding, andlattice mismatch at boundaries.Injection electrons are slow down by tr

32、apping at the surface of the particle andmay back reaction through combination with I3- iron.Ref (18)Recent R&Ds of the Oxide Film in DSSCMethod improvingContentsEvaluationRef.Design & process*Nanocrystallite(TiO2,SnO2, ZnO.) coated with the shells of material(Al2O3,MgO, ZnO)*Column ZnO film (struct

33、ure scale 100-500nm ) -electrodeposition, non- equilibrium growth on wurtzite crystal*addition of larger particle TiO2Voc; IPCEscatteringscattering( optical path length)Ref. (19)Ref. (20)Ref. (21)Analysis*SPV(surface photo voltage measurement)*Decay kinetics(nanosecond transient absorption)Detect electron injection processRef. (22)Ref. (23)Band positions of semiconductorsThe Electrolyte -o

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論