




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、回歸分析2022/9/151第1頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二一元線性回歸多元線性回歸回歸分析方法數(shù)學(xué)模型及定義*模型參數(shù)估計(jì)*檢驗(yàn)、預(yù)測(cè)與控制可線性化的一元非線性回歸(曲線回歸)數(shù)學(xué)模型及定義*模型參數(shù)估計(jì)*多元線性回歸中的檢驗(yàn)與預(yù)測(cè)逐步回歸分析2022/9/152第2頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二一、數(shù)學(xué)模型例1 測(cè)16名成年女子的身高與腿長(zhǎng)所得數(shù)據(jù)如下:以身高x為橫坐標(biāo),以腿長(zhǎng)y為縱坐標(biāo)將這些數(shù)據(jù)點(diǎn)(xI,yi)在平面直角坐標(biāo)系上標(biāo)出.散點(diǎn)圖解答2022/9/153第3頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二一元線性回歸
2、分析的主要任務(wù)是:返回、1、用試驗(yàn)值(樣本值)對(duì)0b1b和s作點(diǎn)估計(jì);、2、對(duì)回歸系數(shù)0b1b作假設(shè)檢驗(yàn); 3、在x=0 x處對(duì)y作預(yù)測(cè),對(duì)y作區(qū)間估計(jì).2022/9/154第4頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二二、模型參數(shù)估計(jì)1、回歸系數(shù)的最小二乘估計(jì)2022/9/155第5頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二其中, 2022/9/156第6頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二返回2022/9/157第7頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二三、檢驗(yàn)、預(yù)測(cè)與控制1、回歸方程的顯著性檢驗(yàn)2022/9/158第8頁,
3、共58頁,2022年,5月20日,9點(diǎn)24分,星期二2022/9/159第9頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二()F檢驗(yàn)法 ()t檢驗(yàn)法以下介紹三種不同的檢驗(yàn)方法,它們的本質(zhì)是相同的2022/9/1510第10頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二()r檢驗(yàn)法2022/9/1511第11頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二2、回歸系數(shù)的置信區(qū)間2022/9/1512第12頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二3、預(yù)測(cè)與控制(1)預(yù)測(cè):對(duì)固定的x值預(yù)測(cè)相應(yīng)的y值2022/9/1513第13頁,共58頁,2022年,5月
4、20日,9點(diǎn)24分,星期二(2)控制返回2022/9/1514第14頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二四、可線性化的一元非線性回歸 (曲線回歸)例2 出鋼時(shí)所用的盛鋼水的鋼包,由于鋼水對(duì)耐火材料的侵蝕, 容積不斷增大.我們希望知道使用次數(shù)與增大的容積之間的關(guān) 系.對(duì)一鋼包作試驗(yàn),測(cè)得的數(shù)據(jù)列于下表:解答2022/9/1515第15頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二散點(diǎn)圖此即非線性回歸或曲線回歸 問題(需要配曲線)配曲線的一般方法是:2022/9/1516第16頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二通常選擇的六類曲線如下:返回2022
5、/9/1517第17頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二2 多元線性回歸多元線性回歸在工程上更為有用。一、數(shù)學(xué)模型及定義2022/9/1518第18頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二2022/9/1519第19頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二返回2022/9/1520第20頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二二、模型參數(shù)估計(jì)解得估計(jì)值 2022/9/1521第21頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二返回2022/9/1522第22頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二三、
6、多元線性回歸中的檢驗(yàn)與預(yù)測(cè) ()F檢驗(yàn)法()r檢驗(yàn)法(殘差平方和)2022/9/1523第23頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二2、預(yù)測(cè)(1)點(diǎn)預(yù)測(cè)(2)區(qū)間預(yù)測(cè)返回2022/9/1524第24頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二四、逐步回歸分析 實(shí)際問題中影響因變量的因素可能很多,我們希望從中挑選出影響顯著的自變量來建立回歸模型,這就涉及到變量選擇的問題。逐步回歸是一種從眾多變量中有效地選擇重要變量的方法。,它是在多元線性回歸的基礎(chǔ)上派生出來的一種算法技巧。 “最優(yōu)”的回歸方程就是包含所有對(duì)Y有影響的變量, 而不包含對(duì)Y影響不顯著的變量回歸方程。20
7、22/9/1525第25頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二(4)“有進(jìn)有出”的逐步回歸分析。(1)從所有可能的因子(變量)組合的回歸方程中選擇最優(yōu)者;(2)從包含全部變量的回歸方程中逐次剔除不顯著因子;(3)從一個(gè)變量開始,把變量逐個(gè)引入方程;選擇“最優(yōu)”的回歸方程有以下幾種方法: 以第四種方法,即逐步回歸分析法在篩選變量方面較為理想.2022/9/1526第26頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二 這個(gè)過程反復(fù)進(jìn)行,直至既無不顯著的變量從回歸方程中剔除,又無顯著變量可引入回歸方程時(shí)為止。逐步回歸分析法的思想: 從一個(gè)自變量開始,視自變量Y作用的顯著程
8、度,從大到地依次逐個(gè)引入回歸方程。 當(dāng)引入的自變量由于后面變量的引入而變得不顯著時(shí),要將其剔除掉。 引入一個(gè)自變量或從回歸方程中剔除一個(gè)自變量,為逐步回歸的一步。 對(duì)于每一步都要進(jìn)行Y值檢驗(yàn),以確保每次引入新的顯著性變量前回歸方程中只包含對(duì)Y作用顯著的變量。返回2022/9/1527第27頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二統(tǒng)計(jì)工具箱中的回歸分析命令1、多元線性回歸2、多項(xiàng)式回歸3、非線性回歸4、逐步回歸返回2022/9/1528第28頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二1. 多元線性回歸 b=regress( Y, X )1)確定回歸系數(shù)的點(diǎn)估計(jì)值:2
9、022/9/1529第29頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二3、畫出殘差及其置信區(qū)間: rcoplot(r,rint)2)求回歸系數(shù)的點(diǎn)估計(jì)和區(qū)間估計(jì)、并檢驗(yàn)回歸模型: b, bint,r,rint,stats=regress(Y,X,alpha)回歸系數(shù)的區(qū)間估計(jì)殘差用于檢驗(yàn)回歸模型的統(tǒng)計(jì)量,有三個(gè)數(shù)值:相關(guān)系數(shù)r2、F值、與F對(duì)應(yīng)的概率p置信區(qū)間 顯著性水平(缺省時(shí)為0.05)2022/9/1530第30頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二例1解:1、輸入數(shù)據(jù): x=143 145 146 147 149 150 153 154 155 156 1
10、57 158 159 160 162 164; X=ones(16,1) x; Y=88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102;2、回歸分析及檢驗(yàn): b,bint,r,rint,stats=regress(Y,X) b,bint,statsTo MATLAB(liti11)題目2022/9/1531第31頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二3、殘差分析,作殘差圖: rcoplot(r,rint) 從殘差圖可以看出,除第二個(gè)數(shù)據(jù)外,其余數(shù)據(jù)的殘差離零點(diǎn)均較近,且殘差的置信區(qū)間均包含零點(diǎn),這說明回歸模型 y=-16.073
11、+0.7194x能較好的符合原始數(shù)據(jù),而第二個(gè)數(shù)據(jù)可視為異常點(diǎn). 4、預(yù)測(cè)及作圖:z=b(1)+b(2)*x plot(x,Y,k+,x,z,r)返回To MATLAB(liti12)2022/9/1532第32頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二多 項(xiàng) 式 回 歸 (一)一元多項(xiàng)式回歸 (1)確定多項(xiàng)式系數(shù)的命令:p,S=polyfit(x,y,m)(2)一元多項(xiàng)式回歸命令:polytool(x,y,m)1、回歸:y=a1xm+a2xm-1+amx+am+1 此命令產(chǎn)生一個(gè)交互式的畫面,畫面中有擬合曲線和y的置信區(qū)間。通過左下方的Export菜單,可以輸出回歸系數(shù)等。20
12、22/9/1533第33頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二2、預(yù)測(cè)和預(yù)測(cè)誤差估計(jì):(1)Y=polyval(p,x)求polyfit所得的回歸多項(xiàng)式在x處的預(yù) 測(cè)值Y; (2)Y,DELTA=polyconf(p,x,S,alpha)求polyfit所得 的回歸多項(xiàng)式在x處的預(yù)測(cè)值Y及預(yù)測(cè)值的顯著性為1- alpha的置信區(qū)間Y DELTA;alpha缺省時(shí)為0.5.一元多項(xiàng)式回歸也可以化為多元線性回歸來解。2022/9/1534第34頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二法一 直接作二次多項(xiàng)式回歸: t=1/30:1/30:14/30; s=11.86
13、 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48; p,S=polyfit(t,s,2)To MATLAB(liti21)得回歸模型為 :2022/9/1535第35頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二法二化為多元線性回歸:t=1/30:1/30:14/30;s=11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48;T=ones(14,1) t
14、 (t.2);b,bint,r,rint,stats=regress(s,T);b,statsTo MATLAB(liti22)得回歸模型為 :Y=polyconf(p,t,S) plot(t,s,k+,t,Y,r)預(yù)測(cè)及作圖To MATLAB(liti23)2022/9/1536第36頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二(二)多元二項(xiàng)式回歸命令:rstool(x,y,model, alpha)nm矩陣顯著性水平(缺省時(shí)為0.05)n維列向量2022/9/1537第37頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二 命令rstool產(chǎn)生一個(gè)交互式畫面,畫面中有m個(gè)
15、圖形,這m個(gè)圖形分別給出了一個(gè)獨(dú)立變量xi(另m-1個(gè)變量取固定值)與y的擬合曲線,以及y的置信區(qū)間。可以通過鍵入不同的xi值來獲得相應(yīng)的y值。2022/9/1538第38頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二 例3 設(shè)某商品的需求量與消費(fèi)者的平均收入、商品價(jià)格的統(tǒng)計(jì)數(shù) 據(jù)如下,建立回歸模型,預(yù)測(cè)平均收入為1000、價(jià)格為6時(shí) 的商品需求量.解 直接用多元二項(xiàng)式回歸:x1=1000 600 1200 500 300 400 1300 1100 1300 300;x2=5 7 6 6 8 7 5 4 3 9;y=100 75 80 70 50 65 90 100 110 60;
16、x=x1 x2; rstool(x,y,purequadratic)2022/9/1539第39頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二 在畫面左下方的下拉式菜單中選”all”, 則beta、rmse和residuals都傳送到Matlab工作區(qū)中.在左邊圖形下方的方框中輸入800,右邊圖形下方的方框中輸入6。 則畫面左邊的“Predicted Y”下方的數(shù)據(jù)變?yōu)?6.3971,即預(yù)測(cè)出平均收入為800、價(jià)格為6時(shí)的商品需求量為86.3971.2022/9/1540第40頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二在Matlab工作區(qū)中輸入命令: beta, rms
17、eTo MATLAB(liti31)2022/9/1541第41頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二非線性回 歸 (1)確定回歸系數(shù)的命令: beta,r,J=nlinfit(x,y,model, beta0)(2)非線性回歸命令:nlintool(x,y,model, beta0,alpha)1、回歸:殘差Jacobian矩陣,用于估計(jì)預(yù)測(cè)誤差需要的數(shù)據(jù)。回歸系數(shù)的初值是事先用m-文件定義的非線性函數(shù)估計(jì)出的回歸系數(shù)輸入數(shù)據(jù)x、y分別為 矩陣和n維列向量,對(duì)一元非線性回歸,x為n維列向量。其中個(gè)參數(shù)含義同前,alpha為顯著性水平,缺省時(shí)為0.05。該命令產(chǎn)生一個(gè)交互式的
18、畫面,畫面中有擬合曲線和y的置信區(qū)間。通過左下方的Export菜單,可以輸出回歸系數(shù)等。2022/9/1542第42頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二2、預(yù)測(cè)和預(yù)測(cè)誤差估計(jì):該命令用于求nlinfit 或nlintool所得的回歸函數(shù)在x處的預(yù)測(cè)值Y及預(yù)測(cè)值的顯著性為1-alpha的置信區(qū)間Y DELTA.Y,DELTA=nlpredci(model, x,beta,r,J)2022/9/1543第43頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二例 4 對(duì)第一節(jié)例2,求解如下:2、輸入數(shù)據(jù): x=2:16; y=6.42 8.20 9.58 9.5 9.7 1
19、0 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76; beta0=8 2;3、求回歸系數(shù): beta,r ,J=nlinfit(x,y,volum,beta0); beta得結(jié)果:beta = 11.6036 -1.0641即得回歸模型為:To MATLAB(liti41)題目2022/9/1544第44頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二4、預(yù)測(cè)及作圖: YY,delta=nlpredci(volum,x,beta,r ,J); plot(x,y,k+,x,YY,r)To MATLAB(liti42)2022/9/1
20、545第45頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二例5 財(cái)政收入預(yù)測(cè)問題:財(cái)政收入與國(guó)民收入、工業(yè)總產(chǎn)值、農(nóng)業(yè)總產(chǎn)值、總?cè)丝?、就業(yè)人口、固定資產(chǎn)投資等因素有關(guān)。下表列出了1952-1981年的原始數(shù)據(jù),試構(gòu)造預(yù)測(cè)模型。 解 設(shè)國(guó)民收入、工業(yè)總產(chǎn)值、農(nóng)業(yè)總產(chǎn)值、總?cè)丝?、就業(yè)人口、固定資產(chǎn)投資分別為x1、x2、x3、x4、x5、x6,財(cái)政收入為y,設(shè)變量之間的關(guān)系為:y= ax1+bx2+cx3+dx4+ex5+fx6使用非線性回歸方法求解。2022/9/1546第46頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二1 對(duì)回歸模型建立M文件model.m如下: funct
21、ion yy=model(beta0,X) a=beta0(1); b=beta0(2); c=beta0(3); d=beta0(4); e=beta0(5); f=beta0(6); x1=X(:,1); x2=X(:,2); x3=X(:,3); x4=X(:,4); x5=X(:,5); x6=X(:,6); yy=a*x1+b*x2+c*x3+d*x4+e*x5+f*x6; 2022/9/1547第47頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二2. 主程序liti6.m如下:X=598.00 349.00 461.00 57482.00 20729.00 44.00 .
22、 2927.00 6862.00 1273.00 100072.0 43280.00 496.00;y=184.00 216.00 248.00 254.00 268.00 286.00 357.00 444.00 506.00 . 271.00 230.00 266.00 323.00 393.00 466.00 352.00 303.00 447.00 . 564.00 638.00 658.00 691.00 655.00 692.00 657.00 723.00 922.00 . 890.00 826.00 810.0;beta0=0.50 -0.03 -0.60 0.01 -0.02
23、 0.35;betafit = nlinfit(X,y,model,beta0)To MATLAB(liti6)2022/9/1548第48頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二 betafit = 0.5243 -0.0294 -0.6304 0.0112 -0.0230 0.3658即y= 0.5243x1-0.0294x2-0.6304x3+0.0112x4-0.0230 x5+0.3658x6結(jié)果為:返 回2022/9/1549第49頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二逐 步 回 歸逐步回歸的命令是: stepwise(x,y,inmodel,al
24、pha) 運(yùn)行stepwise命令時(shí)產(chǎn)生三個(gè)圖形窗口:Stepwise Plot,Stepwise Table,Stepwise History. 在Stepwise Plot窗口,顯示出各項(xiàng)的回歸系數(shù)及其置信區(qū)間. Stepwise Table 窗口中列出了一個(gè)統(tǒng)計(jì)表,包括回歸系數(shù)及其置信區(qū)間,以及模型的統(tǒng)計(jì)量剩余標(biāo)準(zhǔn)差(RMSE)、相關(guān)系數(shù)(R-square)、F值、與F對(duì)應(yīng)的概率P.矩陣的列數(shù)的指標(biāo),給出初始模型中包括的子集(缺省時(shí)設(shè)定為全部自變量)顯著性水平(缺省時(shí)為0.5)自變量數(shù)據(jù), 階矩陣因變量數(shù)據(jù), 階矩陣2022/9/1550第50頁,共58頁,2022年,5月20日,9點(diǎn)2
25、4分,星期二例6 水泥凝固時(shí)放出的熱量y與水泥中4種化學(xué)成分x1、x2、x3、 x4 有關(guān),今測(cè)得一組數(shù)據(jù)如下,試用逐步回歸法確定一個(gè) 線性模 型.1、數(shù)據(jù)輸入:x1=7 1 11 11 7 11 3 1 2 21 1 11 10;x2=26 29 56 31 52 55 71 31 54 47 40 66 68;x3=6 15 8 8 6 9 17 22 18 4 23 9 8;x4=60 52 20 47 33 22 6 44 22 26 34 12 12;y=78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4;x=x1 x2 x3 x4;2022/9/1551第51頁,共58頁,2022年,5月20日,9點(diǎn)24分,星期二2、逐步回歸:(1)先在初始模型中取全部自變量: stepwise(x,y)得圖Stepwise Plot 和表Stepwise Table圖Stepwise P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電工聘請(qǐng)合同范本
- 供熱ppp項(xiàng)目合同范本
- 分期出租手機(jī)合同范本
- 共享單車租賃合同范本
- 個(gè)體雇傭司機(jī)合同范本
- 公司買車抵押合同范本
- 沖壓模具采購(gòu)合同范本
- 內(nèi)墻涂料維修合同范本
- 醫(yī)療材料采購(gòu)合同范本
- 保險(xiǎn)服務(wù)合同范本
- 2025年山東青島自貿(mào)發(fā)展有限公司招聘筆試參考題庫含答案解析
- 液化氣罐的使用和安全防范
- 2024年山東外貿(mào)職業(yè)學(xué)院高職單招語文歷年參考題庫含答案解析
- 2025江蘇常州溧陽市部分機(jī)關(guān)事業(yè)單位招聘編外人員78人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年學(xué)校心理健康教育工作計(jì)劃(三篇)
- 2025年教科版科學(xué)五年級(jí)下冊(cè)教學(xué)計(jì)劃(含進(jìn)度表)
- 劇本殺范本完整版
- 北師大版一年級(jí)語文下冊(cè)第一單元元宵節(jié)《1元宵節(jié)》
- 歐盟一般食品法Regulation-(EC)-No-178-2002中文翻譯
- 2024屆高考語文二輪復(fù)習(xí)詩歌專題訓(xùn)練文學(xué)短評(píng)類題型(含解析)
- 2024年全球協(xié)作機(jī)器人產(chǎn)業(yè)發(fā)展白皮書
評(píng)論
0/150
提交評(píng)論