版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1“是函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的( )A充分不必要條件B必要不充分條件C充分必要條件D既不充分也不必要條件2已知x,y滿足不等式組,則點所在區(qū)域的面積是( )A1B2CD3已知是虛數(shù)單位,
2、則復(fù)數(shù)( )ABC2D4已知集合,則( )ABCD5若,則下列不等式不能成立的是( )ABCD6已知點P在橢圓:=1(ab0)上,點P在第一象限,點P關(guān)于原點O的對稱點為A,點P關(guān)于x軸的對稱點為Q,設(shè),直線AD與橢圓的另一個交點為B,若PAPB,則橢圓的離心率e=( )ABCD7若滿足約束條件則的最大值為( )A10B8C5D38五行學(xué)說是華夏民族創(chuàng)造的哲學(xué)思想,是華夏文明重要組成部分.古人認(rèn)為,天下萬物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關(guān)系.若從5類元素中任選2類元素,則2類元素相生的概率為( )ABCD9設(shè)a,b(0,1)(1,+)
3、,則a=b是logA充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件10已知集合Myy2x,x0,Nxylg(2xxA(1,)B(1,2)C2,)D1,)11將函數(shù)圖象上每一點的橫坐標(biāo)變?yōu)樵瓉淼?倍,再將圖像向左平移個單位長度,得到函數(shù)的圖象,則函數(shù)圖象的一個對稱中心為( )ABCD12若函數(shù)函數(shù)只有1個零點,則的取值范圍是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13九章算術(shù)第七章“盈不足”中第一題:“今有共買物,人出八,盈三錢;人出七,不足四,問人數(shù)物價各幾何?”借用我們現(xiàn)在的說法可以表述為:有幾個人合買一件物品,每人出8元,則付完錢后還多3元;若每人出7
4、元,則還差4元才夠付款.問他們的人數(shù)和物品價格?答:一共有_人;所合買的物品價格為_元14函數(shù)在的零點個數(shù)為_.15若函數(shù)(a0且a1)在定義域m,n上的值域是m2,n2(1mn),則a的取值范圍是_16某市公租房源位于、三個小區(qū),每位申請人只能申請其中一個小區(qū)的房子,申請其中任意一個小區(qū)的房子是等可能的,則該市的任意位申請人中,恰好有人申請小區(qū)房源的概率是_ .(用數(shù)字作答)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知等比數(shù)列是遞增數(shù)列,且(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和18(12分)已知的三個內(nèi)角所對的邊分別為,向量,且.(1)求角的大小
5、;(2)若,求的值19(12分)如圖,在四棱錐中,底面是邊長為2的菱形,.(1)證明:平面平面ABCD;(2)設(shè)H在AC上,若,求PH與平面PBC所成角的正弦值.20(12分)已知函數(shù)().(1)討論的單調(diào)性;(2)若對,恒成立,求的取值范圍.21(12分)某商場為改進服務(wù)質(zhì)量,在進場購物的顧客中隨機抽取了人進行問卷調(diào)查調(diào)查后,就顧客“購物體驗”的滿意度統(tǒng)計如下:滿意不滿意男女是否有的把握認(rèn)為顧客購物體驗的滿意度與性別有關(guān)?若在購物體驗滿意的問卷顧客中按照性別分層抽取了人發(fā)放價值元的購物券若在獲得了元購物券的人中隨機抽取人贈其紀(jì)念品,求獲得紀(jì)念品的人中僅有人是女顧客的概率附表及公式:22(10
6、分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點, 是上異于,的點, .(1)證明:平面平面;(2)若點為半圓弧上的一個三等分點(靠近點)求二面角的余弦值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】,令解得當(dāng),的圖像如下圖當(dāng),的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數(shù)圖像的畫法.2C【解析】畫出不等式表示的平面區(qū)域,計算面積即可.【詳解】不等式表示的平面區(qū)域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,所以陰影部分面積.故
7、選:C.【點睛】本題考查不等式組表示的平面區(qū)域面積的求法,考查數(shù)形結(jié)合思想和運算能力,屬于??碱}.3A【解析】根據(jù)復(fù)數(shù)的基本運算求解即可.【詳解】.故選:A【點睛】本題主要考查了復(fù)數(shù)的基本運算,屬于基礎(chǔ)題.4C【解析】由題意和交集的運算直接求出.【詳解】 集合,.故選:C.【點睛】本題考查了集合的交集運算.集合進行交并補運算時,常借助數(shù)軸求解.注意端點處是實心圓還是空心圓.5B【解析】根據(jù)不等式的性質(zhì)對選項逐一判斷即可.【詳解】選項A:由于,即,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B
8、.【點睛】本題考查不等關(guān)系和不等式,屬于基礎(chǔ)題.6C【解析】設(shè),則,設(shè),根據(jù)化簡得到,得到答案.【詳解】設(shè),則,則,設(shè),則,兩式相減得到:,即, ,故,即,故,故.故選:.【點睛】本題考查了橢圓的離心率,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.7D【解析】畫出可行域,將化為,通過平移即可判斷出最優(yōu)解,代入到目標(biāo)函數(shù),即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標(biāo)函數(shù)為直線方程的斜截式,.由圖可知當(dāng)直線過時,直線在軸上的截距最大,有最大值為3.故選:D.【點睛】本題考查了線性規(guī)劃問題.一般第一步畫出可行域,然后將目標(biāo)函數(shù)轉(zhuǎn)化為 的形式,在可行域內(nèi)通過平移找到最優(yōu)解,將最優(yōu)解帶回到目標(biāo)函數(shù)即
9、可求出最值.注意畫可行域時,邊界線的虛實問題.8A【解析】列舉出金、木、水、火、土任取兩個的所有結(jié)果共10種,其中2類元素相生的結(jié)果有5種,再根據(jù)古典概型概率公式可得結(jié)果.【詳解】金、木、水、火、土任取兩類,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結(jié)果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結(jié)果,所以2類元素相生的概率為,故選A.【點睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時,找準(zhǔn)基本事件個數(shù)是解題的關(guān)鍵,基本亊件的探求方法有 (1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復(fù)
10、雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,. ,再,.依次. 這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.9A【解析】根據(jù)題意得到充分性,驗證a=2,b=1【詳解】a,b0,11,+,當(dāng)a=b當(dāng)logab=log故選:A.【點睛】本題考查了充分不必要條件,意在考查學(xué)生的計算能力和推斷能力.10B【解析】M=y|y=N=x|MN=(1,2)故選B11D【解析】根據(jù)函數(shù)圖象的變換規(guī)律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標(biāo)變?yōu)樵瓉淼?倍,得到再將圖像向左平移個單位長度,得到函數(shù)的圖象,故選:D【點睛】考查三角函數(shù)圖象的變換規(guī)律以及其有關(guān)性
11、質(zhì),基礎(chǔ)題.12C【解析】轉(zhuǎn)化有1個零點為與的圖象有1個交點,求導(dǎo)研究臨界狀態(tài)相切時的斜率,數(shù)形結(jié)合即得解.【詳解】有1個零點等價于與的圖象有1個交點記,則過原點作的切線,設(shè)切點為,則切線方程為,又切線過原點,即,將,代入解得所以切線斜率為,所以或故選:C【點睛】本題考查了導(dǎo)數(shù)在函數(shù)零點問題中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。137 53 【解析】根據(jù)物品價格不變,可設(shè)共有x人,列出方程求解即可【詳解】設(shè)共有人,由題意知 ,解得,可知商品價格為53元.即共有7人,商品價格為53元.【點睛】本題主要考查了數(shù)學(xué)文化及一
12、元一次方程的應(yīng)用,屬于中檔題.141【解析】本問題轉(zhuǎn)化為曲線交點個數(shù)問題,在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,利用數(shù)形結(jié)合思想進行求解即可.【詳解】問題函數(shù)在的零點個數(shù),可以轉(zhuǎn)化為曲線交點個數(shù)問題.在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,如下圖所示:由圖象可知:當(dāng)時,兩個函數(shù)只有一個交點.故答案為:1【點睛】本題考查了求函數(shù)的零點個數(shù)問題,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想.15 (1,)【解析】在定義域m,n上的值域是m2,n2,等價轉(zhuǎn)化為與的圖像在(1,)上恰有兩個交點,考慮相切狀態(tài)可求a的取值范圍.【詳解】由題意知:與的圖像在(1,)上恰有兩個交點考查臨界情形:與切于,故答案為:.【點睛】本題主要
13、考查導(dǎo)數(shù)的幾何意義,把已知條件進行等價轉(zhuǎn)化是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)抽象的核心素養(yǎng).16【解析】基本事件總數(shù),恰好有2人申請小區(qū)房源包含的基本事件個數(shù),由此能求出該市的任意5位申請人中,恰好有2人申請小區(qū)房源的概率【詳解】解:某市公租房源位于、三個小區(qū),每位申請人只能申請其中一個小區(qū)的房子,申請其中任意一個小區(qū)的房子是等可能的,該市的任意5位申請人中,基本事件總數(shù),該市的任意5位申請人中,恰好有2人申請小區(qū)房源包含的基本事件個數(shù):,該市的任意5位申請人中,恰好有2人申請小區(qū)房源的概率是故答案為:【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,屬于中檔題三、解答題
14、:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17 (1) (2) 【解析】(1)先利用等比數(shù)列的性質(zhì),可分別求出的值,從而可求出數(shù)列的通項公式;(2)利用錯位相減求和法可求出數(shù)列的前項和【詳解】解:(1)由是遞增等比數(shù)列,聯(lián)立 ,解得或,因為數(shù)列是遞增數(shù)列,所以只有符合題意,則,結(jié)合可得,數(shù)列的通項公式:;(2)由,;那么,則,將得:【點睛】本題考查了等比數(shù)列的性質(zhì),考查了等比數(shù)列的通項公式,考查了利用錯位相減法求數(shù)列的前項和.18(1)(2)【解析】利用平面向量數(shù)量積的坐標(biāo)表示和二倍角的余弦公式得到關(guān)于的方程,解方程即可求解;由知,在中利用余弦定理得到關(guān)于的方程,與方程聯(lián)立求出,進而
15、求出,利用兩角差的正弦公式求解即可.【詳解】由題意得,,由二倍角的余弦公式可得, , 又因為,所以,解得或,. 在中,由余弦定理得,即 又因為,把代入整理得,解得,所以為等邊三角形, ,即.【點睛】本題考查利用平面向量數(shù)量積的坐標(biāo)表示和余弦定理及二倍角的余弦公式解三角形;熟練掌握余弦的二倍角公式和余弦定理是求解本題的關(guān)鍵;屬于中檔題、??碱}型.19(1)見解析;(2)【解析】(1)記,連結(jié),推導(dǎo)出,平面,由此能證明平面平面;(2)推導(dǎo)出,平面,連結(jié),由題意得為的重心,從而平面平面,進而是與平面所成角,由此能求出與平面所成角的正弦值【詳解】(1)證明:記,連結(jié),中,平面,平面,平面平面(2)中,
16、平面,連結(jié),由題意得為的重心,平面平面平面,在平面的射影落在上,是與平面所成角,中,與平面所成角的正弦值為【點睛】本題考查面面垂直的證明,考查線面角的正弦值的求法,考查線線、線面、面面的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題20(1)當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時, 在上單調(diào)遞增;(2).【解析】(1)求出函數(shù)的定義域和導(dǎo)函數(shù), ,對討論,得導(dǎo)函數(shù)的正負(fù),得原函數(shù)的單調(diào)性;(2)法一: 由得,分別運用導(dǎo)函數(shù)得出函數(shù)(),的單調(diào)性,和其函數(shù)的最值,可得 ,可得的范圍;法二:由得,化為令(),研究函數(shù)的單調(diào)性,可得的取值范圍.【詳解】(1)的定義域為,當(dāng)時,由得,得, 在上單調(diào)遞減
17、,在上單調(diào)遞增;當(dāng)時,恒成立,在上單調(diào)遞增;(2)法一: 由得,令(),則,在上單調(diào)遞減,即,令,則,在上單調(diào)遞增,在上單調(diào)遞減,所以,即, (*)當(dāng)時,(*)式恒成立,即恒成立,滿足題意法二:由得,令(),則,在上單調(diào)遞減,即,當(dāng)時,由()知在上單調(diào)遞增,恒成立,滿足題意當(dāng)時,令,則,所以在上單調(diào)遞減,又,當(dāng)時,使得,當(dāng)時,即,又,不滿足題意,綜上所述,的取值范圍是【點睛】本題考查對于含參數(shù)的函數(shù)的單調(diào)性的討論,不等式恒成立時,求解參數(shù)的范圍,屬于難度題.21有的把握認(rèn)為顧客購物體驗的滿意度與性別有關(guān);.【解析】由題得,根據(jù)數(shù)據(jù)判斷出顧客購物體驗的滿意度與性別有關(guān);獲得了元購物券的人中男顧客
18、有人,記為,;女顧客有人,記為,從中隨機抽取人,所有基本事件有個,其中僅有1人是女顧客的基本事件有個,進而求出獲得紀(jì)念品的人中僅有人是女顧客的概率.【詳解】解析:由題得所以,有的把握認(rèn)為顧客購物體驗的滿意度與性別有關(guān)獲得了元購物券的人中男顧客有人,記為,;女顧客有人,記為,從中隨機抽取人,所有基本事件有:,共個其中僅有1人是女顧客的基本事件有:,共個所以獲得紀(jì)念品的人中僅有人是女顧客的概率【點睛】本小題主要考查統(tǒng)計案例、卡方分布、概率等基本知識,考查概率統(tǒng)計基本思想以及抽象概括等能力和應(yīng)用意識,屬于中檔題22(1)詳見解析;(2).【解析】(1)由直徑所對的圓周角為,可知,通過計算,利用勾股定理的逆定理可以判斷出為直角三角形,所以有.由已知可以證明出,這樣利用線面垂直的判定定理可以證明平面,利用面面垂直的判定定理可以證明出平面平面;(2)以為坐標(biāo)原點,分別以垂直于平面向上的方向、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,求出相應(yīng)點的坐標(biāo),求出平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 預(yù)防觸電大班安全教育
- 快速做課件教學(xué)課件
- 起重機械操作培訓(xùn)
- 頸椎病的運動處方
- 3.3.2鹽類水解平衡常數(shù)與影響鹽類水解的因素 課件高二上學(xué)期化學(xué)人教版(2019)選擇性必修1
- 防意外安全演練
- 細(xì)菌性肝膿腫個案護理
- 濕疹性皮炎的護理查房
- 保育老師真辛苦教案反思
- 化簡比說課稿
- 2024二十屆三中全會知識競賽題庫及答案
- 畫法幾何 (210)標(biāo)高投影
- 期中考試班會PPT
- (完整word版)小學(xué)開展儀式教育的策略研究.
- 步兵班戰(zhàn)術(shù)教案(全)
- 推薦塞上風(fēng)情笛子簡譜
- 布魯納《教育過程》
- 樣品承認(rèn)書標(biāo)準(zhǔn)版
- 田間生產(chǎn)管理記錄檔案
- 智慧城市建設(shè)論文5篇
- 人教版八年級地理(上冊)期中試卷及答案(完整)
評論
0/150
提交評論