2021-2022學(xué)年安徽省定遠(yuǎn)育才實驗學(xué)校高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第1頁
2021-2022學(xué)年安徽省定遠(yuǎn)育才實驗學(xué)校高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第2頁
2021-2022學(xué)年安徽省定遠(yuǎn)育才實驗學(xué)校高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第3頁
2021-2022學(xué)年安徽省定遠(yuǎn)育才實驗學(xué)校高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第4頁
2021-2022學(xué)年安徽省定遠(yuǎn)育才實驗學(xué)校高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項1考試結(jié)束后,請將本試卷和答題卡一并交回2答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目

2、要求的。1空氣質(zhì)量指數(shù)是反映空氣狀況的指數(shù),指數(shù)值趨小,表明空氣質(zhì)量越好,下圖是某市10月1日-20日指數(shù)變化趨勢,下列敘述錯誤的是( )A這20天中指數(shù)值的中位數(shù)略高于100B這20天中的中度污染及以上(指數(shù))的天數(shù)占C該市10月的前半個月的空氣質(zhì)量越來越好D總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好2復(fù)數(shù)滿足,則復(fù)數(shù)等于()ABC2D-23若,則函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是( )A B C D4已知 若在定義域上恒成立,則的取值范圍是( )ABCD5已知某幾何體的三視圖如圖所示,則該幾何體的體積是( )AB64CD326函數(shù)的圖象向右平移個單位得到函數(shù)的圖象,并且函數(shù)在區(qū)間上單調(diào)

3、遞增,在區(qū)間上單調(diào)遞減,則實數(shù)的值為( )ABC2D7下列命題為真命題的個數(shù)是( )(其中,為無理數(shù));.A0B1C2D38已知定點,是圓上的任意一點,點關(guān)于點的對稱點為,線段的垂直平分線與直線相交于點,則點的軌跡是( )A橢圓B雙曲線C拋物線D圓9如圖,將兩個全等等腰直角三角形拼成一個平行四邊形,將平行四邊形沿對角線折起,使平面平面,則直線與所成角余弦值為( )ABCD10命題“”的否定為( )ABCD11若復(fù)數(shù)(是虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限12中國古代數(shù)學(xué)著作算法統(tǒng)宗中有這樣一個問題;“三百七十八里關(guān),初行健步不為難,次后腳痛遞減

4、半,六朝才得到其關(guān),要見每朝行里數(shù),請公仔細(xì)算相還.”其意思為:“有一個人走了378里路,第一天健步走行,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達(dá)目的地,求該人每天走的路程.”由這個描述請算出這人第四天走的路程為( )A6里B12里C24里D48里二、填空題:本題共4小題,每小題5分,共20分。13在中,角,的對邊分別為,.若;且,則周長的范圍為_.14已知各棱長都相等的直三棱柱(側(cè)棱與底面垂直的棱柱稱為直棱柱)所有頂點都在球的表面上.若球的表面積為則該三棱柱的側(cè)面積為_15已知函數(shù)在處的切線與直線平行,則為_.16 “今有女善織,日益功疾,初日織五尺,今一月共織九匹三丈”其白

5、話意譯為:“現(xiàn)有一善織布的女子,從第2天開始,每天比前一天多織相同數(shù)量的布,第一天織了5尺布,現(xiàn)在一個月(按30天計算)共織布390尺”則每天增加的數(shù)量為_尺,設(shè)該女子一個月中第n天所織布的尺數(shù)為,則_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在四棱錐中,是等邊三角形,點在棱上,平面平面(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設(shè)直線與平面相交于點,若,求的值18(12分)棉花的纖維長度是評價棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實驗地分別種植某品種的棉花,為了評價該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、

6、乙兩地的棉花中各隨機抽取21根棉花纖維進行統(tǒng)計,結(jié)果如下表:(記纖維長度不低于311的為“長纖維”,其余為“短纖維”)纖維長度甲地(根數(shù))34454乙地(根數(shù))112116(1)由以上統(tǒng)計數(shù)據(jù),填寫下面列聯(lián)表,并判斷能否在犯錯誤概率不超過1.125的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系”.甲地乙地總計長纖維短纖維總計附:(1);(2)臨界值表;1111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)現(xiàn)從上述41根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進行檢測,在這8根纖維中,記乙地“短纖維”的

7、根數(shù)為,求的分布列及數(shù)學(xué)期望.19(12分)設(shè),函數(shù).(1)當(dāng)時,求在內(nèi)的極值;(2)設(shè)函數(shù),當(dāng)有兩個極值點時,總有,求實數(shù)的值.20(12分)如圖,在四棱錐中,底面為菱形,為正三角形,平面平面分別是的中點.(1)證明:平面(2)若,求二面角的余弦值.21(12分)已知的內(nèi)角、的對邊分別為、,滿足.有三個條件:;.其中三個條件中僅有兩個正確,請選出正確的條件完成下面兩個問題:(1)求;(2)設(shè)為邊上一點,且,求的面積.22(10分)已知函數(shù)與的圖象關(guān)于直線對稱. (為自然對數(shù)的底數(shù))(1)若的圖象在點處的切線經(jīng)過點,求的值;(2)若不等式恒成立,求正整數(shù)的最小值.參考答案一、選擇題:本題共12

8、小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】結(jié)合題意,根據(jù)題目中的天的指數(shù)值,判斷選項中的命題是否正確.【詳解】對于,由圖可知天的指數(shù)值中有個低于,個高于,其中第個接近,第個高于,所以中位數(shù)略高于,故正確.對于,由圖可知天的指數(shù)值中高于的天數(shù)為,即占總天數(shù)的,故正確.對于,由圖可知該市月的前天的空氣質(zhì)量越來越好,從第天到第天空氣質(zhì)量越來越差,故錯誤.對于,由圖可知該市月上旬大部分指數(shù)在以下,中旬大部分指數(shù)在以上,所以該市月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好,故正確.故選:【點睛】本題考查了對折線圖數(shù)據(jù)的分析,讀懂題意是解題關(guān)鍵,并能運用所學(xué)知識對命

9、題進行判斷,本題較為基礎(chǔ).2B【解析】通過復(fù)數(shù)的模以及復(fù)數(shù)的代數(shù)形式混合運算,化簡求解即可.【詳解】復(fù)數(shù)滿足,故選B.【點睛】本題主要考查復(fù)數(shù)的基本運算,復(fù)數(shù)模長的概念,屬于基礎(chǔ)題3B【解析】函數(shù)在區(qū)間內(nèi)單調(diào)遞增, ,在恒成立, 在恒成立, , 函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是,故選B.4C【解析】先解不等式,可得出,求出函數(shù)的值域,由題意可知,不等式在定義域上恒成立,可得出關(guān)于的不等式,即可解得實數(shù)的取值范圍.【詳解】,先解不等式.當(dāng)時,由,得,解得,此時;當(dāng)時,由,得.所以,不等式的解集為.下面來求函數(shù)的值域.當(dāng)時,則,此時;當(dāng)時,此時.綜上所述,函數(shù)的值域為,由于在定義域上恒成立,則不等式在

10、定義域上恒成立,所以,解得.因此,實數(shù)的取值范圍是.故選:C.【點睛】本題考查利用函數(shù)不等式恒成立求參數(shù),同時也考查了分段函數(shù)基本性質(zhì)的應(yīng)用,考查分類討論思想的應(yīng)用,屬于中等題.5A【解析】根據(jù)三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側(cè)的四棱錐,其底面是邊長為4的正方形,高為4,故.故選:A【點睛】本題考查了三視圖的簡單應(yīng)用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎(chǔ)題.6C【解析】由函數(shù)的圖象向右平移個單位得到,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,可得時,取得最大值,即,當(dāng)時,解得,故選C.點睛:本題

11、主要考查了三角函數(shù)圖象的平移變換和性質(zhì)的靈活運用,屬于基礎(chǔ)題;據(jù)平移變換“左加右減,上加下減”的規(guī)律求解出,根據(jù)函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減可得時,取得最大值,求解可得實數(shù)的值.7C【解析】對于中,根據(jù)指數(shù)冪的運算性質(zhì)和不等式的性質(zhì),可判定值正確的;對于中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)得到函數(shù)為單調(diào)遞增函數(shù),進而得到,即可判定是錯誤的;對于中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的最大值為,進而得到,即可判定是正確的.【詳解】由題意,對于中,由,可得,根據(jù)不等式的性質(zhì),可得成立,所以是正確的;對于中,設(shè)函數(shù),則,所以函數(shù)為單調(diào)遞增函數(shù),因為,則又由,所以,即,所以不正確;對于中,設(shè)函數(shù),則,當(dāng)時,函

12、數(shù)單調(diào)遞增,當(dāng)時,函數(shù)單調(diào)遞減,所以當(dāng)時,函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點睛】本題主要考查了不等式的性質(zhì),以及導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,其中解答中根據(jù)題意,合理構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與運算能力,屬于中檔試題.8B【解析】根據(jù)線段垂直平分線的性質(zhì),結(jié)合三角形中位線定理、圓錐曲線和圓的定義進行判斷即可.【詳解】因為線段的垂直平分線與直線相交于點,如下圖所示:所以有,而是中點,連接,故,因此當(dāng)在如下圖所示位置時有,所以有,而是中點,連接,故,因此,綜上所述:有,所以點的軌跡是雙曲線.故選:B【點睛】本題考

13、查了雙曲線的定義,考查了數(shù)學(xué)運算能力和推理論證能力,考查了分類討論思想.9C【解析】利用建系,假設(shè)長度,表示向量與,利用向量的夾角公式,可得結(jié)果.【詳解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作軸/,建立空間直角坐標(biāo)系如圖設(shè),所以則所以所以故選:C【點睛】本題考查異面直線所成成角的余弦值,一般采用這兩種方法:(1)將兩條異面直線作輔助線放到同一個平面,然后利用解三角形知識求解;(2)建系,利用空間向量,屬基礎(chǔ)題.10C【解析】套用命題的否定形式即可.【詳解】命題“”的否定為“”,所以命題“”的否定為“”.故選:C【點睛】本題考查全稱命題的否定,屬于基礎(chǔ)題.11A【解析】將 整理

14、成的形式,得到復(fù)數(shù)所對應(yīng)的的點,從而可選出所在象限.【詳解】解:,所以所對應(yīng)的點為在第一象限.故選:A.【點睛】本題考查了復(fù)數(shù)的乘法運算,考查了復(fù)數(shù)對應(yīng)的坐標(biāo).易錯點是誤把 當(dāng)成進行計算.12C【解析】設(shè)第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得,求出(里,由此能求出該人第四天走的路程【詳解】設(shè)第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得:,解得(里,(里故選:C【點睛】本題考查等比數(shù)列的某一項的求法,考查等比數(shù)列等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13【解析】先求角,再用

15、余弦定理找到邊的關(guān)系,再用基本不等式求的范圍即可.【詳解】解:所以三角形周長故答案為:【點睛】考查正余弦定理、基本不等式的應(yīng)用以及三條線段構(gòu)成三角形的條件;基礎(chǔ)題.14【解析】只要算出直三棱柱的棱長即可,在中,利用即可得到關(guān)于x的方程,解方程即可解決.【詳解】由已知,解得,如圖所示,設(shè)底面等邊三角形中心為,直三棱柱的棱長為x,則,故,即,解得,故三棱柱的側(cè)面積為.故答案為:.【點睛】本題考查特殊柱體的外接球問題,考查學(xué)生的空間想象能力,是一道中檔題.15【解析】根據(jù)題意得出,由此可得出實數(shù)的值.【詳解】,直線的斜率為,由于函數(shù)在處的切線與直線平行,則.故答案為:.【點睛】本題考查利用函數(shù)的切線

16、與直線平行求參數(shù),解題時要結(jié)合兩直線的位置關(guān)系得出兩直線斜率之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.16 52 【解析】設(shè)從第2天開始,每天比前一天多織尺布,由等差數(shù)列前項和公式求出,由此利用等差數(shù)列通項公式能求出.【詳解】設(shè)從第2天開始,每天比前一天多織d尺布,則,解得,即每天增加的數(shù)量為,故答案為,52.【點睛】本題主要考查等差數(shù)列的通項公式、等差數(shù)列的求和公式,意在考查利用所學(xué)知識解決問題的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)證明見解析(2)(3)【解析】(1)取中點為,連接,由等邊三角形性質(zhì)可得,再由面面垂直的性質(zhì)可得,根據(jù)平行直線的

17、性質(zhì)可得,進而求證;(2)以為原點,過作的平行線,分別以,分別為軸,軸,軸建立空間直角坐標(biāo)系,設(shè),由點在棱上,可設(shè),即可得到,再求得平面的法向量,進而利用數(shù)量積求解;(3)設(shè),則,求得,即可求得點的坐標(biāo),再由與平面的法向量垂直,進而求解.【詳解】(1)證明:取中點為,連接,因為是等邊三角形,所以,因為且相交于,所以平面,所以,因為,所以,因為,在平面內(nèi),所以,所以.(2)以為原點,過作的平行線,分別以,分別為軸,軸,軸建立空間直角坐標(biāo)系,設(shè),則,因為在棱上,可設(shè),所以,設(shè)平面的法向量為,因為,所以,即,令,可得,即,設(shè)直線與平面所成角為,所以,可知當(dāng)時,取最大值.(3)設(shè),則有,得,設(shè),那么,

18、所以,所以.因為,所以.又因為,所以,設(shè)平面的法向量為,則,即,可得,即 因為在平面內(nèi),所以,所以,所以,即,所以或者(舍),即.【點睛】本題考查面面垂直的證明,考查空間向量法求線面成角,考查運算能力與空間想象能力.18(1)在犯錯誤概率不超過的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系”(2)見解析【解析】試題分析:(1)可以根據(jù)所給表格填出列聯(lián)表,利用列聯(lián)表求出,結(jié)合所給數(shù)據(jù),應(yīng)用獨立性檢驗知識可作出判斷;(2)寫出的所有可能取值,并求出對應(yīng)的概率,可列出分布列并進一步求出的數(shù)學(xué)期望試題解析:()根據(jù)已知數(shù)據(jù)得到如下列聯(lián)表:甲地乙地總計長纖維91625短纖維11415總計212141根據(jù)列聯(lián)表中

19、的數(shù)據(jù),可得所以,在犯錯誤概率不超過的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系” ()由表可知在8根中乙地“短纖維”的根數(shù)為,的可能取值為:1,1,2,3, , 的分布列為:1123 19(1)極大值是,無極小值;(2)【解析】(1)當(dāng)時,可求得,令,利用導(dǎo)數(shù)可判斷的單調(diào)性并得其零點,從而可得原函數(shù)的極值點及極大值;(2)表示出,并求得,由題意,得方程有兩個不同的實根,從而可得及,由,得則可化為對任意的恒成立,按照、三種情況分類討論,分離參數(shù)后轉(zhuǎn)化為求函數(shù)的最值可解決;【詳解】(1)當(dāng)時,.令,則,顯然在上單調(diào)遞減,又因為,故時,總有,所以在上單調(diào)遞減.由于,所以當(dāng)時,;當(dāng)時,.當(dāng)變化時,的變化情

20、況如下表:+-增極大減所以在上的極大值是,無極小值.(2)由于,則.由題意,方程有兩個不等實根,則,解得,且,又,所以.由,可得又.將其代入上式得:.整理得,即當(dāng)時,不等式恒成立,即.當(dāng)時,恒成立,即,令,易證是上的減函數(shù).因此,當(dāng)時,故.當(dāng)時,恒成立,即,因此,當(dāng)時,所以.綜上所述,.【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)的最值、研究函數(shù)的極值等知識,考查分類討論思想、轉(zhuǎn)化思想,考查學(xué)生綜合運用知識分析問題解決問題的能力,該題綜合性強,難度大,對能力要求較高20(1)詳見解析;(2).【解析】(1)連接,由菱形的性質(zhì)以及中位線,得,由平面平面,且交線,得平面,故而,最后由線面垂直的判定得結(jié)論.(2)以為原點建平面直角坐標(biāo)系,求出平面平與平面的法向量,最后求得二面角的余弦值為.【詳解】解:(1)連結(jié) ,且是的中點,平面平面,平面平面,平面. 平面,又為菱形,且為棱的中點,.又,平面平面.(2)由題意有,四邊形為菱形,且 分別以,所在直線為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,設(shè),則設(shè)平面的法向量為由,得,令,得取平面的法向量為二面角為銳二面角,二面角的余弦值為【點睛】處理線面垂直問題時,需要學(xué)生對線面垂直的判定定理特別熟悉,運

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論