六年級(jí)奧數(shù)任意四邊形、梯形與相似模型(二)教師版_第1頁(yè)
六年級(jí)奧數(shù)任意四邊形、梯形與相似模型(二)教師版_第2頁(yè)
六年級(jí)奧數(shù)任意四邊形、梯形與相似模型(二)教師版_第3頁(yè)
六年級(jí)奧數(shù)任意四邊形、梯形與相似模型(二)教師版_第4頁(yè)
六年級(jí)奧數(shù)任意四邊形、梯形與相似模型(二)教師版_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、PAGE |初一數(shù)學(xué)基礎(chǔ)-提高-精英學(xué)生版| 第1講 第頁(yè) PAGE 頁(yè)碼 15 / NUMPAGES 總頁(yè)數(shù) 15任意四邊形、梯形與相似模型例題精講六年級(jí)奧數(shù)任意四邊形、梯形與相似模型二教師版梯形中比例關(guān)系“梯形蝴蝶定理”:;的對(duì)應(yīng)份數(shù)為梯形蝴蝶定理給我們提供了解決梯形面積與上、下底之間關(guān)系互相轉(zhuǎn)換的渠道,通過(guò)構(gòu)造模型,直接應(yīng)用結(jié)論,往往在題目中有事半功倍的效果具體的推理過(guò)程我們可以用將在第九講所要講的相似模型進(jìn)行說(shuō)明如圖,求梯形的面積【考點(diǎn)】梯形模型 【難度】2星 【題型】解答設(shè)為份,為份,根據(jù)梯形蝴蝶定理,所以;又因?yàn)?所以;那么,所以梯形面積,或者根據(jù)梯形蝴蝶定理,【答案】9如下圖,梯

2、形的平行于,對(duì)角線,交于,已知與的面積分別為 平方厘米與平方厘米,那么梯形的面積是_平方厘米 【考點(diǎn)】梯形模型 【難度】2星 【題型】填空根據(jù)梯形蝴蝶定理,可得,再根據(jù)梯形蝴蝶定理,所以平方厘米那么梯形的面積為平方厘米【答案】144如圖所示,在梯形ABCD中,ABCD,對(duì)角線AC,BD相交于點(diǎn)O。已知AB=5,CD=3,且梯形ABCD的面積為4,求三角形OAB的面積?!究键c(diǎn)】梯形模型 【難度】2星 【題型】解答【關(guān)鍵詞】華杯賽,決賽,15分,第3大題第,1題根據(jù)題意,AB=5,CD=3,CD:AB=3:5,則根據(jù)蝴蝶模型,令=25份,則梯形ABCD共有:9+15+25+15=64份。所以1份為

3、:464=,則三角形OAB的面積為25=?!敬鸢浮刻菪蔚膶?duì)角線與交于點(diǎn),已知梯形上底為2,且三角形的面積等于三角形面積的,求三角形與三角形的面積之比 【考點(diǎn)】梯形模型 【難度】3星 【題型】解答根據(jù)梯形蝴蝶定理,可以求出,再根據(jù)梯形蝴蝶定理,通過(guò)利用已有幾何模型,我們輕松解決了這個(gè)問(wèn)題,而沒(méi)有像以前一樣,為了某個(gè)條件的缺乏而千辛萬(wàn)苦進(jìn)行構(gòu)造假設(shè),所以,請(qǐng)同學(xué)們一定要牢記幾何模型的結(jié)論【答案】如下圖,四邊形中,對(duì)角線和交于點(diǎn),已知,并且,那么的長(zhǎng)是多少?【考點(diǎn)】梯形模型 【難度】2星 【題型】解答【關(guān)鍵詞】華杯賽根據(jù)蝴蝶定理,所以,又,所以【答案】梯形的下底是上底的倍,三角形的面積是,問(wèn)三角形的

4、面積是多少?【考點(diǎn)】梯形模型 【難度】2星 【題型】解答根據(jù)梯形蝴蝶定理,所以【答案】4【鞏固】如圖,梯形中,、的面積分別為和,求梯形的面積【考點(diǎn)】梯形模型 【難度】2星 【題型】解答根據(jù)梯形蝴蝶定理,所以, 【答案】7.5在梯形ABCD中,上底長(zhǎng)5厘米,下底長(zhǎng)10厘米,平方厘米,則梯形ABCD的面積是 平方厘米?!究键c(diǎn)】梯形模型 【難度】3星 【題型】解答【關(guān)鍵詞】華杯賽,決賽,第4題,10分因?yàn)锳DBC,故 又 ,故 在與中,因其高相等,且BO:DO=2:1, 故 :=2:1而 ,故 。同理,在與中,因CO:AO=2:1,且在相應(yīng)邊上的高相等,故 :=2:1即 .在中,因AO:CO=1:2

5、,且其在相應(yīng)邊上的高相等,故: =1:2。即綜上,=10+20+10+5=45【答案】45如下圖,一個(gè)長(zhǎng)方形被一些直線分成了若干個(gè)小塊,已知三角形的面積是,三角形的面積是,求四邊形的面積【考點(diǎn)】梯形模型 【難度】3星 【題型】解答如圖,連結(jié)EF,顯然四邊形ADEF和四邊形BCEF都是梯形,于是我們可以得到三角形EFG的面積等于三角形ADG的面積;三角形BCH的面積等于三角形EFH的面積,所以四邊形EGFH的面積是【答案】34【鞏固】如圖,長(zhǎng)方形中,若三角形1的面積與三角形3的面積比為4比5,四邊形2的面積為36,則三角形1的面積為_(kāi) 【考點(diǎn)】梯形模型 【難度】3星 【題型】填空【關(guān)鍵詞】人大附

6、中,入學(xué)測(cè)試題做輔助線如下:利用梯形模型,這樣發(fā)現(xiàn)四邊形2分成左右兩邊,其面積正好等于三角形1和三角形3,所以1的面積就是,3的面積就是【答案】20如圖,正方形面積為平方厘米,是邊上的中點(diǎn)求圖中陰影部分的面積【考點(diǎn)】梯形模型 【難度】3星 【題型】解答因?yàn)槭沁吷系闹悬c(diǎn),所以,根據(jù)梯形蝴蝶定理可以知道,設(shè)份,則 份,所以正方形的面積為份,份,所以,所以平方厘米【答案】1【鞏固】在下圖的正方形中,是邊的中點(diǎn),與相交于點(diǎn),三角形的面積為1平方厘米,那么正方形面積是 平方厘米【考點(diǎn)】梯形模型 【難度】3星 【題型】填空連接,根據(jù)題意可知,根據(jù)蝴蝶定理得平方厘米,平方厘米,那么平方厘米【答案】12如圖面

7、積為平方厘米的正方形中,是邊上的三等分點(diǎn),求陰影部分的面積【考點(diǎn)】梯形模型 【難度】3星 【題型】解答因?yàn)槭沁吷系娜确贮c(diǎn),所以,設(shè)份,根據(jù)梯形蝴蝶定理可以知道份,份,份,因此正方形的面積為份,所以,所以平方厘米【答案】3如圖,在長(zhǎng)方形中,厘米,厘米,求陰影部分的面積【考點(diǎn)】梯形模型 【難度】3星 【題型】解答方法一:如圖,連接,將陰影部分的面積分為兩個(gè)部分,其中三角形的面積為平方厘米由于,根據(jù)梯形蝴蝶定理,所以,而平方厘米,所以平方厘米,陰影部分的面積為平方厘米方法二:如圖,連接,由于,設(shè)份,根據(jù)梯形蝴蝶定理, 份,份,份,因此份,份,而平方厘米,所以平方厘米【答案】3.5已知是平行四邊形,

8、三角形的面積為6平方厘米則陰影部分的面積是 平方厘米【考點(diǎn)】梯形模型 【難度】3星 【題型】填空【關(guān)鍵詞】學(xué)而思杯,六年級(jí)連接由于是平行四邊形,所以,根據(jù)梯形蝴蝶定理,所以平方厘米,平方厘米,又平方厘米,陰影部分面積為平方厘米【答案】21右圖中是梯形,是平行四邊形,已知三角形面積如圖所示單位:平方厘米,陰影部分的面積是 平方厘米 【考點(diǎn)】梯形模型 【難度】3星 【題型】填空連接由于與是平行的,所以也是梯形,那么根據(jù)蝴蝶定理,故,所以平方厘米【答案】6右圖中是梯形,是平行四邊形,已知三角形面積如圖所示單位:平方厘米,陰影部分的面積是 平方厘米【考點(diǎn)】梯形模型 【難度】3星 【題型】填空【關(guān)鍵詞】

9、三帆中學(xué)連接由于與是平行的,所以也是梯形,那么根據(jù)蝴蝶定理,故,所以平方厘米另解:在平行四邊形中,平方厘米,所以平方厘米,根據(jù)蝴蝶定理,陰影部分的面積為平方厘米【答案】4E是平行四邊形ABCD的CD邊上的一點(diǎn),BD、AE相交于點(diǎn)F,已知三角形AFD的面積是6,三角形DEF的面積是4,求四邊形BCEF的面積為多少?【考點(diǎn)】梯形模型 【難度】3星 【題型】解答【關(guān)鍵詞】希望杯,5年級(jí),復(fù)賽,第15題如圖,在平行線中的蝴蝶中,蝴蝶翅膀相等都為6,而頂上的三角形為664=9,“?”處的三角形面積為9+6-6-4=5從而所求四邊形面積為5=6=11.【答案】11如圖所示,、將長(zhǎng)方形分成4塊,的面積是5平

10、方厘米,的面積是10平方厘米問(wèn):四邊形的面積是多少平方厘米? 【考點(diǎn)】梯形模型 【難度】3星 【題型】解答連接,根據(jù)梯形模型,可知三角形的面積和三角形的面積相等,即其面積也是10平方厘米,再根據(jù)蝴蝶定理,三角形的面積為平方厘米,所以長(zhǎng)方形的面積為平方厘米四邊形的面積為平方厘米【答案】25如圖所示,、將長(zhǎng)方形分成4塊,的面積是4平方厘米,的面積是6平方厘米問(wèn):四邊形的面積是多少平方厘米? 【考點(diǎn)】梯形模型 【難度】3星 【題型】解答 法1連接,根據(jù)面積比例模型或梯形蝴蝶定理,可知三角形的面積和三角形的面積相等,即其面積也是6平方厘米,再根據(jù)蝴蝶定理,三角形的面積為平方厘米,所以長(zhǎng)方形的面積為平方

11、厘米四邊形的面積為平方厘米法2由題意可知,根據(jù)相似三角形性質(zhì),所以三角形的面積為:平方厘米則三角形面積為15平方厘米,長(zhǎng)方形面積為平方厘米四邊形的面積為平方厘米【答案】11如圖,長(zhǎng)方形被、分成四塊,已知其中3塊的面積分別為2、5、8平方厘米,那么余下的四邊形的面積為_(kāi)平方厘米 【考點(diǎn)】梯形模型 【難度】3星 【題型】填空【關(guān)鍵詞】迎春杯,高年級(jí)組,初賽,4題連接、四邊形為梯形,所以,又根據(jù)蝴蝶定理,所以,所以平方厘米,平方厘米那么長(zhǎng)方形的面積為平方厘米,四邊形的面積為平方厘米【答案】9正方形的邊長(zhǎng)為,是的中點(diǎn)如圖。四邊形的面積為 。【考點(diǎn)】梯形模型 【難度】3星 【題型】填空【關(guān)鍵詞】走美杯,

12、4年級(jí),決賽,第4題,8分連結(jié),即,所以?!敬鸢浮?5如圖,長(zhǎng)方形中,是直角三角形且面積為54,的長(zhǎng)是16,的長(zhǎng)是9那么四邊形的面積是 【考點(diǎn)】梯形模型 【難度】3星 【題型】填空【關(guān)鍵詞】迎春杯,初賽解法一:連接,依題意,所以,則又因?yàn)?所以,得,所以 解法二:由于,所以,而,根據(jù)蝴蝶定理,所以,所以【答案】如圖所示,長(zhǎng)方形內(nèi)的陰影部分的面積之和為70,AB=8,AD=15四邊形的面積為_(kāi)【考點(diǎn)】梯形模型 【難度】4星 【題型】填空【關(guān)鍵詞】走美杯,六年級(jí),初賽,第5題根據(jù)容斥關(guān)系:四邊形的面積=三角形AFC+三角形DBF-白色部分的面積三角形AFC+三角形DBF=長(zhǎng)方形面積的一半即60,白

13、色部分的面積等于長(zhǎng)方形面積減去陰影部分的面積,即120-70=50所以四邊形的面積=60-50=10【答案】10如圖5所示,矩形ABCD的面積是24平方厘米,、三角形ADM與三角形BCN的面積之和是7.8平方厘米,則四邊形PMON的面積是 平方厘米?!究键c(diǎn)】梯形模型 【難度】4星 【題型】填空【關(guān)鍵詞】華杯賽,初賽,第9題1.8【答案】1.8如圖,是等腰直角三角形,是正方形,線段與相交于點(diǎn)已知正方形的面積48,則的面積是多少?【考點(diǎn)】梯形模型 【難度】4星 【題型】解答由于是正方形,所以與平行,那么四邊形是梯形在梯形中,和的面積是相等的而,所以的面積是面積的,那么的面積也是面積的由于是等腰直角

14、三角形,如果過(guò)作的垂線,為垂足,那么是的中點(diǎn),而且,可見(jiàn)和的面積都等于正方形面積的一半,所以的面積與正方形的面積相等,為48那么的面積為【答案】12如圖所示,是梯形,面積是,的面積是9,的面積是27那么陰影面積是多少?【考點(diǎn)】梯形模型 【難度】3星 【題型】解答根據(jù)梯形蝴蝶定理,可以得到,而等積變換,所以可得,并且,而,所以陰影的面積是:【答案】如圖,正六邊形面積為,那么陰影部分面積為多少?【考點(diǎn)】梯形模型 【難度】3星 【題型】解答連接陰影圖形的長(zhǎng)對(duì)角線,此時(shí)六邊形被平分為兩半,根據(jù)六邊形的特殊性質(zhì),和梯形蝴蝶定理把六邊形分為十八份,陰影部分占了其中八份,所以陰影部分的面積【答案】如圖,已知

15、是中點(diǎn),是的中點(diǎn),是的中點(diǎn)三角形由這6部分組成,其中比多6平方厘米那么三角形的面積是多少平方厘米?【考點(diǎn)】梯形模型 【難度】3星 【題型】解答因?yàn)槭侵悬c(diǎn),為中點(diǎn),有且平行于,則四邊形為梯形在梯形中有=,=,:=: =4又已知-=6,所以=,=,所以=16,而=,所以=4,梯形的面積為、四塊圖形的面積和,為有與的面積比為平方與平方的比,即為1:4所以面積為梯形面積的=,即為因?yàn)槭侵悬c(diǎn),所以與的面積相等,而的面積為、的面積和,即為平方厘米三角形的面積為48平方厘米【答案】48如下圖,在梯形中,與平行,且,點(diǎn)、分別是和的中點(diǎn),已知陰影四邊形的面積是54平方厘米,則梯形的面積是 平方厘米【考點(diǎn)】梯形模

16、型 【難度】4星 【題型】填空連接,可以把大梯形看成是兩個(gè)小梯形疊放在一起,應(yīng)用梯形蝴蝶定理,可以確定其中各個(gè)小三角形之間的比例關(guān)系,應(yīng)用比例即可求出梯形面積設(shè)梯形的上底為,總面積為則下底為,所以,由于梯形和梯形的高相等,所以,故,根據(jù)梯形蝴蝶定理,梯形內(nèi)各三角形的面積之比為,所以;同理可得,所以,由于平方厘米,所以平方厘米【答案】210如圖,在一個(gè)邊長(zhǎng)為6的正方形中,放入一個(gè)邊長(zhǎng)為2的正方形,保持與原正方形的邊平行,現(xiàn)在分別連接大正方形的一個(gè)頂點(diǎn)與小正方形的兩個(gè)頂點(diǎn),形成了圖中的陰影圖形,那么陰影部分的面積為 【考點(diǎn)】梯形模型 【難度】4星 【題型】填空本題中小正方形的位置不確定,所以可以通

17、過(guò)取特殊值的方法來(lái)快速求解,也可以采用梯形蝴蝶定理來(lái)解決一般情況解法一:取特殊值,使得兩個(gè)正方形的中心相重合,如右圖所示,圖中四個(gè)空白三角形的高均為,因此空白處的總面積為,陰影部分的面積為解法二:連接兩個(gè)正方形的對(duì)應(yīng)頂點(diǎn),可以得到四個(gè)梯形,這四個(gè)梯形的上底都為2,下底都為6,上底、下底之比為,根據(jù)梯形蝴蝶定理,這四個(gè)梯形每個(gè)梯形中的四個(gè)小三角形的面積之比為,所以每個(gè)梯形中的空白三角形占該梯形面積的,陰影部分的面積占該梯形面積的,所以陰影部分的總面積是四個(gè)梯形面積之和的,那么陰影部分的面積為【答案】14如圖,在正方形中,、分別在與上,且,連接、,相交于點(diǎn),過(guò)作、得到兩個(gè)正方形和,設(shè)正方形的面積為,正方形的面積為,則_ 【考點(diǎn)】梯形模型 【難度】4星 【題型】填空連接、設(shè)正方形邊長(zhǎng)為3,則,所以,因?yàn)?所以由梯形蝴蝶定理,得,所以,因?yàn)?所以,所以,由于底邊上的高即為正方形的邊長(zhǎng),所以,所以,則【答案】下圖中,四邊形都是邊長(zhǎng)為1的正方形,、分別是,的中點(diǎn),如果左圖中陰影部分與右圖中陰影部分的面積之比是最簡(jiǎn)分?jǐn)?shù),那么,的值等于 【考點(diǎn)】梯形模型 【難度】5星 【題型】填空【關(guān)鍵詞】迎春杯,高年級(jí)組,決賽左、右兩個(gè)圖中的陰影部分都是不規(guī)則圖形,不方便直接求面積,觀察發(fā)現(xiàn)兩個(gè)圖中的空白部

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論