用模態(tài)疊加法求固有頻率資料_第1頁
用模態(tài)疊加法求固有頻率資料_第2頁
用模態(tài)疊加法求固有頻率資料_第3頁
用模態(tài)疊加法求固有頻率資料_第4頁
用模態(tài)疊加法求固有頻率資料_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、 用模態(tài)疊加法求固有頻率模態(tài)分析法(振型疊加法)原理對(duì)于n個(gè)自由度系統(tǒng),其在廣義坐標(biāo)系下的運(yùn)動(dòng)微分方程為M & k x F (t)( 1-1)設(shè)在t=0時(shí),有初始條件:x(0) x 0 和 X0)g0通過求解特征值問題,可得系統(tǒng)的固有頻率和振型向量niu i (i 1,2,L ,n)i 1 u i (i 1,2,L ,n)以正則振型矩陣作為變換矩陣,令(a)代入方程(1-1),并前乘以正則振型矩陣的轉(zhuǎn)置T,得Z&T F(t)(b)2n12n2O2 nnP(t)F(t)是正則坐標(biāo)系下的激勵(lì)。(c)則方程(b)P(t)展開后,得&n舘片(t)2 z n2 2L L2 z nn nP2(t)Pn(t

2、)(1-2)式中Pj(t) T F(t) (i 1,2,L ,n),為對(duì)應(yīng)第i個(gè)正則坐標(biāo)的激勵(lì)。對(duì)于方程(1-2 )是一組n個(gè)獨(dú)立的方程,每個(gè)方程和單自由度系統(tǒng)的強(qiáng)迫振動(dòng)相同,因此可按單自由度系統(tǒng)中的方法獨(dú)立地求解每個(gè)方程。則由杜哈美積分得方程(1-2 )的通zi (t)zi0 cos nit也 sin nitni 0( )sinni(t )d i 1,2,L ,nni式中z0和&0是第i個(gè)正則坐標(biāo)的初始位移和初始速度。z0(e)(d)&0前乘以式(兩端,得T MZ0z 0T M x0同理,有&0T M &0與成分量形式%T M X0,(i 1,2,L ,n)&0T M &0,(i 1,2,L

3、 ,n)最后,由方程(a),將正則坐標(biāo)的解T M X0z變換到原廣義坐標(biāo)x,就得到方程(1-1 )的解。(2 )在許多工程問題中系統(tǒng)的自由度很多,要想求出系統(tǒng)的所有固有頻率和振型向量,計(jì)算成本很大,有時(shí)甚至是不可能的。由于激勵(lì)的高頻成分很微弱,或者由于系統(tǒng)的高頻振動(dòng) 沒有激發(fā)出來,總之系統(tǒng)的響應(yīng)中只有較低的幾階振型分量。因此,使用振型疊加法可以使計(jì)算大大地簡(jiǎn)化。例如,若系統(tǒng)為n自由度,且只需考慮前 p( p corresp onds to time step nu mberj - corresp onds to a particular DOF*Direct In tegrati on of

4、the un coupled equati ons of moti onare carried out using the Newmark-B method*do 10 i=1, ndcall newb(i,mr(i,1),cr(i,1),kr(i,1),fr,q,q1,q2,delt, ndim,ttot,1 xmi n(i,1),vmi n(i,1)10con ti nue*Tran sform MODAL time histories back to PHYSICAL Coords.x(t) = Phi.q(t) .etc.Print Output *ic=1do 20 t=0.,tto

5、t,deltdo 30 i=1, ndqt(i,1)=q(ic,i) q1t(i,1)=q1(ic,i) q2t(i,1)=q2(ic,i)30con ti nuecall matmul(phi,qt ,n d,mr, ndim) write (2,43)t,(mr(nn,1),nn=1,nd)43format (f8.4,10e14.6)do 40 i=1, ndq(ic,i)=mr(i,1)con ti nuecallmatmul(phi,q1t ,n d,mr, ndim)write (3,43)t,(mr(nn,1),nn=1,nd) do 41 i=1, ndq1(ic,i)=mr(

6、i,1)con ti nuecallmatmul(phi,q2t ,n d,mr, ndim)write (4,43)t,(mr(nn,1),nn=1,nd) do 42 i=1, ndq2(ic,i)=mr(i,1)con ti nueic=ic+120con ti nue*call res_spec(ic-1,q,q1,q2,delt ,ndim,nd)*Gen erate values of MAXIMUM RESPONSE each DOF*stopend*subrouti ne in put1(m,c,k,phi,t,f, nd,nfor,n dim,delt,ttot,xm in,

7、1 vmi n)*m1 is the system mass matrix (in put)k1 is the system stiffness matrix (in put)m contains the modal mass parameters (ge nerated)c contains the modal damp ing parameters (ge nerated)k contains the modal stiffness parameters (ge nerated)alpha, beta = parameters to gen erate proporti onal damp

8、 ing matrixc = alpham + betakphi contains the modal tran sformatio n matrixt contains the times at which the load vectorf is specifiednd = the nu mber of degrees of freedomnsol = 1 for EIGENSOLUTION ONLYn sol = 2 for EIGENSOLUTION + MODE SUPERPOSITION ANALYSISdelt = step sizettot = total time for wh

9、ich resp onse will be evaluated*This program uses the IMSL Math Subrouti ne DGVCSP to evaluatethe eige nvalues and eige nvectors of the dyn amic system*implicit real *8 (a-h,o-z) real *8 m,k,m1,k1 exter nal dgvcspdimension m(ndim,1),c(ndim,1),k(ndim,1),phi(ndim,ndim),t(20,10)dimension nfor(10),f(20,

10、10),m1(10,10),c1(10,10)dimension k1(10,10),omega(10)dimension phit(10,10),eva(10),evec(10,10)dimension temp1(10,10),temp2(10,10),temp3(10,10),xin(10,1),1 vin (10,1),xmi n(10,1),vmi n(10,1)read (1,*)nsol,nddo 90005 i=1,ndread(1,*)(m1(i,j),j=1, nd)continuedo 90006 i=1, ndread(1,*)(k1(i,j),j=1, nd)cont

11、inue*do 825 i=1, nddo 825 j=1, ndtemp1(i,j)=m1(i,j)temp2(i,j)=k1(i,j)825 con ti nuec Call the IMSL routi ne DGVCSP to evaluate the eige nvalues and c eige nvectors of the system.call dgvcsp( nd,temp2, ndim,temp1, ndim,eva,evec, ndim)do 903 i=1, ndomega(i)= sqrt (eva(nd-i+1)con ti nuecwrite(*,*)(omeg

12、a(i),i=1, nd)c pausec stopdo 904 i=1, nddo 904 j=1, ndphi(i,j)=evec(i, nd-j+1)contin ue* Normalize Eige nvectors wrt 1st row values*do 826 j=1, ndtemp=phi(1,j)do 826 i=1, ndphi(i,j)=phi(i,j)/temp826con ti nue*Print EIGEN OUTPUTTermi nate if NSOL=1*,/,write (5,905)format (/, E I G E N S O L U T I O N

13、 Mode # Omega(rad/sec),/, )do 906 i=1, ndwrite (5,907)i,omega(i)format (i6,e22.8)con ti nuewrite (5,912)912format (/, Mode Shapes ,/)do 908 i=1, ndwrite (5, (10E14.6)(phi(i,j),j=1,nd)con ti nueif (nsol.eq.1)stop*read (1,*)delt,ttotread (1,*)alpha,betacall tran s(phi,phit ,nd,n dim)call matmul1(phit,

14、m1,temp1, nd,n dim) call matmul1(temp1,phi,temp2, nd,n dim) do 909 i=1, ndm(i,1)=temp2(i,i)con ti nuecall matmul1(phit,k1,temp1, nd,n dim) call matmul1(temp1,phi,temp2, nd,n dim) do 910 i=1, ndk(i,1)=temp2(i,i)con ti nue911921922914913915916917918923924925do 911 i=1, ndzeta=0.5*(alpha/omega(i)+beta*

15、omega(i) c(i,1)=2.0*m(i,1)*omega(i)*zetacon ti nuedo 921 i=1, nddo 921 j=1, ndc1(i,j)=alpha*m1(i,j)+beta*k1(i,j)con ti nuewrite (5,922)ndformat (/, S Y S T E M P R O P E R T I E S,1 /, Degrees of Freedom =,i3,/, Mass Matrix ,/)do 913 i=1, ndwrite (5,914)(m1(i,j),j=1,nd)format (10e15.6)con ti nuewrit

16、e (5,915)format (/, Stiffness Matrix ,/)do 916 i=1, ndwrite (5,914)(k1(i,j),j=1,nd)con ti nuewrite (5,917)format (/, Damping Matrix,/)do 918 i=1, ndwrite (5,914)(c1(i,j),j=1,nd)con ti nuewrite (5,923)(m(i,1),i=1,nd)format (/, Modal Masses ,/,10e15.6)write (5,924)(k(i,1),i=1,nd)format (/, Modal Stiff

17、nesses ,/,10e15.6)write (5,925)(c(i,1),i=1,nd)format (/, Modal Damping ,/,10e15.6)read (1,*)(xin(i,1),i=1,nd)read (1,*)(vin(i,1),i=1,nd)do 851 i=1,nd do 851 j=1,nd temp1(i,j)=0.0 temp2(i,j)=0.0 temp3(i,j)=0.0 851 continuedo 852 i=1,nd temp1(i,i)=1.0/m(i,1) 852 continuecall matmul1(temp1,phit,temp2,n

18、d,ndim)call matmul1(temp2,m1,temp3,nd,ndim)call matmul (temp3,xin,nd,xmin,ndim)call matmul (temp3,vin,nd,vmin,ndim)* Input of forcing Function*do 90011 i=1,nd nfor(i)=2 t(1,i)=0.0 t(2,i)=ttot+100.f(1,i)=0.0f(2,i)=0.090011 continue90014 read (1,*,err=90012)i,nfor(i)do 90013 j=1,nfor(i)read (1,*)t(j,i

19、),f(j,i)90013 continuegoto 9001490012 continuereturnend*subroutine force1(tt,f,dt,p,nd,fr,nfor,ndim,ttot)*implicit real *8 (a-h,o-z)dimension tt(20,10),f(20,10),fr(6000,ndim),p(ndim,ndim),f1(10,1),pt(10,10), nfor(n dim),ft(10,1) do 90030 i=1,nddo 90030 j=1, ndpt(i,j)=p(j,i)90030 continueic=1do 90020

20、 t=0.,ttot,dt*In terpolate to obta in value of forcing function Ftat time = t*do 90022 n f=1, nddo 90024 n=1, nfor(n f)-1if (t.ge.tt(n,nf).and.t.le.tt(n+1,nf)thenft( nf,1)=f( n,n f)+(f( n+1, nf)-f(n,n f)*1(t-tt (n,n f)/(tt (n+1, nf)-tt( n,nf)goto 90022en dif90024continue90022 continue*Gen erate MODA

21、L force vector at time = t*call matmul(pt,ft, nd,f1, ndim)do 90026 ii=1, ndfr(ic,ii)=f1(ii,1)90026 continueic=ic+190020 continuereturnend*subrouti ne n ewb(ii,m,c,k,f,x,x1,x2,del, ndim,ttot,xi n,vin)*Direct In tegrati on of the un coupled equati ons of moti onusi ng the NEWMARK-b method*implicit rea

22、l *8 (a-h,o-z)real *8 m,k,ksdimension f(6000,ndim),x(6000,ndim),x1(6000,ndim),x2(6000,ndim)*Assig n In itial Con diti ons ( t=0.0)*x(1,ii)=x inx1(1,ii)=vi n x2(1,ii)=(f(1,ii)-c*x1(1,ii)-k*x(1,ii)/m ks=k+2.0*c/del+4.0*m/del*2*Obta in time history at discrete time in tervals of del*ic=1do 101 t=0.,tto

23、t,deldps=f(ic+1,ii)+m*(4.0*x(ic,ii)/del*2+4.0*x1(ic,ii)1/del+x2(ic,ii)+c*(2.0*x(ic,ii)/del+x1(ic,ii)x(ic+1,ii)=dps/ksx2(ic+1,ii)=(4.0/del*2)*(x(ic+1,ii)-x(ic,ii)-1 del*x1(ic,ii)-x2(ic,ii) x1(ic+1,ii)=(2.0/del)*(x(ic+1,ii)-x(ic,ii)-x1(ic,ii)c write(5,105)ic,t,f(ic+1,ii),f(ic,ii),dps,dxc105 format(*,i

24、6,e17.7,/,5x,2f15.9,/,5x,2e20.10)ic=ic+1101con ti nuereturnend*subrouti nematmul(a,b ,n d,c ,n dim)*Used to multiply two matricesC = A.B*implicit real *8 (a-h,o-z)dimension a(ndim,ndim),b(ndim,1),c(ndim,1)do 9030 i=1, nddo 9030 j=1,1c(i,j)=0.0do 9030 ii=1,nd c(i,j)=c(i,j)+a(i,ii)*b(ii,j)9030 continu

25、ereturnend*subroutine res_spec(n,x,x1,x2,del,ndim,nd)* Obtain the maximum value of the response* (displacement, velocity or acceleration)* at each DOF for the time span considered*implicit real *8 (a-h,o-z)dimension x(6000,ndim),x1(6000,ndim),x2(6000,ndim) dimension xl(10),x1l(10),x2l(10),t(10),t1(10),t2(10)do 9070 i=1,nd xl(i)=x(1,i) x1l(i)=x1(1,i) x2l(i)=x2(1,i) t(i)=0.t1(i)=0. t2(i)=0.9070 continuedo 9060 i=2,ndo 9060 j=1,ndif ( abs(x(i,j).gt.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論