版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、復(fù)習(xí)目錄 考點(diǎn)1 集合與簡(jiǎn)易邏輯典型易錯(cuò)題會(huì)診 命題角度1 集合的概念與性質(zhì) 命題角度2 集合與不等式 命題角度3 集合的應(yīng)用 命題角度4 簡(jiǎn)易邏輯 命題角度5 充要條件探究開放題預(yù)測(cè) 預(yù)測(cè)角度1 集合的運(yùn)算 預(yù)測(cè)角度2 邏輯在集合中的運(yùn)用 預(yù)測(cè)角度3 集合的工具性 預(yù)測(cè)角度4 真假命題的判斷 預(yù)測(cè)角度5 充要條件的應(yīng)用 考點(diǎn)2 函數(shù)(一) 典型易錯(cuò)題會(huì)診 命題角度1 函數(shù)的定義域和值域 命題角度2 函數(shù)單調(diào)性的應(yīng)用 命題角度3 函數(shù)的奇偶性和周期性的應(yīng)用 命題角度4 反函數(shù)的概念和性質(zhì)的應(yīng)用探究開放題預(yù)測(cè) 預(yù)測(cè)角度1 借助函數(shù)單調(diào)性求函數(shù)最值或證明不等式 預(yù)測(cè)角度2 綜合運(yùn)用函數(shù)奇偶性、周期
2、性、單調(diào)進(jìn)行命題 預(yù)測(cè)角度3 反函數(shù)與函數(shù)性質(zhì)的綜合 考點(diǎn)3 函數(shù)(二)典型易錯(cuò)題會(huì)診 命題角度1 二次函數(shù)的圖象和性質(zhì)的應(yīng)用 命題角度2 指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的圖象和性質(zhì)的應(yīng)用 命題角度3 函數(shù)的應(yīng)用探究開放題預(yù)測(cè) 預(yù)測(cè)角度1 二次函數(shù)閉區(qū)間上的最值的問題 預(yù)測(cè)角度2 三個(gè)“二次”的綜合問題 預(yù)測(cè)角度3 含參數(shù)的對(duì)數(shù)函數(shù)與不等式的綜合問題 考點(diǎn)4 數(shù) 列 典型易錯(cuò)題會(huì)診 命題角度1 數(shù)列的概念 命題角度2 等差數(shù)列 命題角度3 等比數(shù)列 命題角度4 等差與等比數(shù)列的綜合 命題角度5 數(shù)列與解析幾何、函數(shù)、不等式的綜合 命題角度6 數(shù)列的應(yīng)用探究開放題預(yù)測(cè) 預(yù)測(cè)角度1 數(shù)列的概念 預(yù)測(cè)角度2 等
3、差數(shù)列與等比數(shù)列 預(yù)測(cè)角度3 數(shù)列的通項(xiàng)與前n項(xiàng)和 預(yù)測(cè)角度4 遞推數(shù)列與不等式的證明 預(yù)測(cè)角度5 有關(guān)數(shù)列的綜合性問題 預(yù)測(cè)角度6 數(shù)列的實(shí)際應(yīng)用 預(yù)測(cè)角度7 數(shù)列與圖形 考點(diǎn)5 三角函數(shù) 典型易錯(cuò)題會(huì)診 命題角度1 三角函數(shù)的圖象和性質(zhì) 命題角度2 三角函數(shù)的恒等變形 命題角度3 三角函數(shù)的綜合應(yīng)用探究開放題預(yù)測(cè) 預(yù)測(cè)角度1 三角函數(shù)的圖象和性質(zhì) 預(yù)測(cè)角度2 運(yùn)用三角恒等變形求值 預(yù)測(cè)角度3 向量與三角函數(shù)的綜合 考點(diǎn)6 平面向量 典型易錯(cuò)題會(huì)診 命題角度1 向量及其運(yùn)算 命題角度2 平面向量與三角、數(shù)列 命題角度3 平面向量與平面解析幾何 命題角度4 解斜三角形探究開放題預(yù)測(cè) 預(yù)測(cè)角度1
4、 向量與軌跡、直線、圓錐曲線等知識(shí)點(diǎn)結(jié)合 預(yù)測(cè)角度2 平面向量為背景的綜合題 考點(diǎn)7 不等式典型易錯(cuò)題會(huì)診 命題角度1 不等式的概念與性質(zhì) 命題角度2 均值不等式的應(yīng)用 命題角度3 不等式的證明 命題角度4 不等式的解法 命題角度5 不等式的綜合應(yīng)用探究開放題預(yù)測(cè) 預(yù)測(cè)角度1 不等式的概念與性質(zhì) 預(yù)測(cè)角度2 不等式的解法 預(yù)測(cè)角度3 不等式的證明 預(yù)測(cè)角度4 不等式的工具性 預(yù)測(cè)角度5 不等式的實(shí)際應(yīng)用 考點(diǎn)8 直線和圓典型易錯(cuò)題會(huì)診 命題角度1 直線的方程 命題角度2 兩直線的位置關(guān)系 命題角度3 簡(jiǎn)單線性規(guī)劃 命題角度4 圓的方程 命題角度5 直線與圓探究開放題預(yù)測(cè) 預(yù)測(cè)角度1 直線的方程
5、 預(yù)測(cè)角度2 兩直線的位置關(guān)系 預(yù)測(cè)角度3 線性規(guī)劃 預(yù)測(cè)角度4 直線與圓 預(yù)測(cè)角度5 有關(guān)圓的綜合問題 考點(diǎn)9 圓錐曲線典型易錯(cuò)題會(huì)診 命題角度1 對(duì)橢圓相關(guān)知識(shí)的考查 命題角度2 對(duì)雙曲線相關(guān)知識(shí)的考查 命題角度3 對(duì)拋物線相關(guān)知識(shí)的考查 命題角度4 對(duì)直線與圓錐曲線相關(guān)知識(shí)的考查 命題角度5 對(duì)軌跡問題的考查 命題角度6 考察圓錐曲線中的定值與最值問題探究開放題預(yù)測(cè) 預(yù)測(cè)角度1 橢圓 預(yù)測(cè)角度2 雙曲線 預(yù)測(cè)角度3 拋物線 預(yù)測(cè)角度4 直線與圓錐曲線 預(yù)測(cè)角度5 軌跡問題 預(yù)測(cè)角度6 圓錐曲線中的定值與最值問題 考點(diǎn)10 空間直線與平面典型易錯(cuò)題會(huì)診 命題角度1 空間直線與平面的位置關(guān)系
6、 命題角度2 空間角 命題角度3 空間距離 命題角度4 簡(jiǎn)單幾何體探究開放題預(yù)測(cè) 預(yù)測(cè)角度1 利用三垂線定理作二面角的平面角 預(yù)測(cè)角度2 求點(diǎn)到面的距離 預(yù)測(cè)角度3 折疊問題 考點(diǎn)11 空間向量典型易錯(cuò)題會(huì)診 命題角度1 求異面直線所成的角 命題角度2 求直線與平面所成的角 命題角度3 求二面角的大小 命題角度4 求距離 探究開放題預(yù)測(cè) 預(yù)測(cè)角度1 利用空間向量解立體幾何中的探索問題 預(yù)測(cè)角度2 利用空間向量求角和距離 考點(diǎn)12 排列、組合、二項(xiàng)式定理典型易錯(cuò)題會(huì)診 命題角度1 正確運(yùn)用兩個(gè)基本原理 命題角度2 排列組合 命題角度3 二項(xiàng)式定理探究開放題預(yù)測(cè) 預(yù)測(cè)角度1 在等可能性事件的概率中
7、考查排列、組合 預(yù)測(cè)角度2 利用二項(xiàng)式定理解決三項(xiàng)以上的展開式問題 預(yù)測(cè)角度3 利用二項(xiàng)式定理證明不等式 考點(diǎn)13 概率與統(tǒng)計(jì)典型易錯(cuò)題會(huì)診命題角度1 求某事件的概率命題角度2 離散型隨機(jī)變量的分布列、期望與方差命題角度3 統(tǒng)計(jì)探究開放題預(yù)測(cè) 預(yù)測(cè)角度1 與比賽有關(guān)的概率問題 預(yù)測(cè)角度2 以概率與統(tǒng)計(jì)為背景的數(shù)列題 預(yù)測(cè)角度3 利用期望與方差解決實(shí)際問題 考點(diǎn)14 極 限典型易錯(cuò)題會(huì)診命題角度1 數(shù)學(xué)歸納法命題角度2 數(shù)列的極限命題角度3 函數(shù)的極限命題角度4 函數(shù)的連續(xù)性探究開放題預(yù)測(cè) 預(yù)測(cè)角度1 數(shù)學(xué)歸納法在數(shù)列中的應(yīng)用 預(yù)測(cè)角度2 數(shù)列的極限 預(yù)測(cè)角度3 函數(shù)的極限 預(yù)測(cè)角度4 函數(shù)的連
8、續(xù)性 考點(diǎn)15 導(dǎo)數(shù)及其應(yīng)用典型易錯(cuò)題會(huì)診 命題角度1 導(dǎo)數(shù)的概念與運(yùn)算 命題角度2 導(dǎo)數(shù)幾何意義的運(yùn)用 命題角度3 導(dǎo)數(shù)的應(yīng)用探究開放題預(yù)測(cè) 預(yù)測(cè)角度1 利用導(dǎo)數(shù)的幾何意義 預(yù)測(cè)角度2 利用導(dǎo)數(shù)探討函數(shù)的單調(diào)性 預(yù)測(cè)角度3 利用導(dǎo)數(shù)求函數(shù)的極值和最 考點(diǎn)16 復(fù) 數(shù)典型易錯(cuò)題會(huì)診 命題角度1 復(fù)數(shù)的概念 命題角度2 復(fù)數(shù)的代數(shù)形式及運(yùn)算探究開放題預(yù)測(cè) 預(yù)測(cè)角度1 復(fù)數(shù)概念的應(yīng)用 預(yù)測(cè)角度2 復(fù)數(shù)的代數(shù)形式及運(yùn)算考點(diǎn)7 不等式不等式的概念與性質(zhì)均值 不等式的應(yīng)用不等式的證明 不等式的解法不等式的綜合應(yīng)用 不等式的概念與性質(zhì) 不等式的解法 不等式的證明 不等式的工具性 不等式的實(shí)際應(yīng)用典型易錯(cuò)題
9、會(huì)診命題角度1不等式的概念與性質(zhì) 1(典型例題)如果a、b、c滿足cba,且acac Bc(b-a)0 Ccb2ab2 Ddc(a-c)c,而ab,ao不一定成立,原因是不知a的符號(hào) 專家把脈 由dbc,且acc,故a0,cbc且ac0,故a0且cc,又a0,abac(2)b-a0,c0,Da-c0,acOac(a-c)ab;|a|b|;ab中,正確的不等式有 ( ) A1個(gè) B2個(gè) C3個(gè) D4個(gè) 考場(chǎng)錯(cuò)解 A 只有正確,、顯然不正確,中應(yīng)是2,故也錯(cuò) 專家把脈 中忽視 與 不可能相等,a b,故 對(duì)癥下藥 B 方法1:運(yùn)用特值法,如a=-,b=-3 方法2:運(yùn)用性質(zhì)由,則ba0,故而判斷
10、3(典型例題)對(duì)于0a1,給出下列四個(gè)不等式 loga(1+o)loga(1+) a1+aa 其中成立的是 ( ) A.與 B與 C.與 D與 考場(chǎng)錯(cuò)解 B 1+a1+,故1oga(1+a) loga(1+) 專家把脈 對(duì)數(shù)函數(shù)比較大小要考慮底數(shù)a的范圍,它與指數(shù)函數(shù)一樣 對(duì)癥下藥 D 0a1a1 1+a 1oga(1+),a1+aa 4(典型例題)已知實(shí)數(shù)a、b滿足等式,下列五個(gè)關(guān)系式0ba ab0 0ab ba0 a=b 其中不可能成立的關(guān)系式有 ( ) A1個(gè) B2個(gè) C3個(gè) D4個(gè) 考場(chǎng)錯(cuò)解 C a=b顯然不成立,而a與b的大小不定,故只有可能兩個(gè)成立,故有3個(gè)不可能成立,即alg=b
11、ig,-a1g2=-blg3 又1g2-b,a0時(shí),ab” 不能弱化條件變成“”也不能強(qiáng)化條件變?yōu)椤癮b0 ”考場(chǎng)思維訓(xùn)練 1 若,|a|,|b|0,且ab0,則下列不等式中能成立的是 ( ) A BC D 答案: C 解析:利用特值法可看出某些選擇不能成立,而事實(shí)上,|a|,|b|0, 又01,10g|a|log|b|,由此也可直接得結(jié)論,應(yīng)選C2已知a、b為不等正數(shù),stN 解析:由0,得,由st00-t,0,b0,則以下不等式中不恒成立的是 ( )A BC D考場(chǎng)錯(cuò)解 Di不一定大于或等于專家把脈 D中直接放縮顯然不易比較 對(duì)癥下藥 B A:a+b2ab,成立C:a2+b2+2=a2+1
12、+b2+12a+2b (當(dāng)且僅當(dāng)a=b=1時(shí)取“=”) 成立 D:兩邊平方|a-b|a+b-2 a-ba+b-2或a-b-a-b+2當(dāng)時(shí)顯然成立解得ab或ab 成立 2(典型例題)設(shè)x(0,),則函數(shù)f(x)=sinx+的最小值是 ( ) A4 B5 C3 D6 考場(chǎng)錯(cuò)解 因?yàn)閤(0,),所以sinx0,0, f(x)=sinx+=4,因此f(x)的最小值是4故選A專家把脈 忽略了均值不等式a+b2(a.0, b0)中等號(hào)成立的條件:當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立事實(shí)上,sinx=不可能成立,因?yàn)樗闪⒌臈l件是sinx=2,這不可能 對(duì)癥下藥 (1)f(x)=sinx+=sinx+,因?yàn)閟inx+2
13、,當(dāng)且僅當(dāng)sinx=1即x= 時(shí)等號(hào)成立又3,當(dāng)且僅當(dāng)sinx=1即x=時(shí)等號(hào)成立所以f(x)=sinx+2+3=5,f(x)的最小值是5故應(yīng)選B (2)令sinx=t,因?yàn)閤(0,),所以0t1,所給函數(shù)變?yōu)閥=t+易知此函數(shù)在區(qū)間(0,1)上是減函數(shù),所以,當(dāng)t=1時(shí),y取最小值5故應(yīng)選B 3(典型例題)設(shè)a0,b0,a2+=1,求a 的最大值 考場(chǎng)錯(cuò)解 0ii(a=0時(shí)取等號(hào)) 專家把脈并非定值 對(duì)癥下藥 為利用均值不等式時(shí)出現(xiàn)定值,先進(jìn)行適當(dāng)?shù)摹皽?、配”時(shí)取 “=”.專家會(huì)診利用均值不等式求最值時(shí)必須滿足“一正”、二定、三等”.尤其是等號(hào)成立的條件,必須驗(yàn)證確定,而要獲得定值條件有時(shí)要
14、配湊.要有一定的靈活性和變形技巧.利用均值不等式解決實(shí)際問題、證明不等式時(shí),要會(huì)利用函數(shù)的思想和放縮法.考場(chǎng)思維訓(xùn)練1 已知答案: B 解析:聯(lián)立解得: 若ab+bc+ca取最小值,可令b=則ab+c+ca=_.答案:解析:abc,0m1 10gmlogmx+logmy,,ab, 又=1又0m1,bc.故abc.3.答案:解析: x2(1-3x)=xx(-2x),當(dāng)且僅當(dāng)x=-2x,即x=時(shí),取得最大值 命題角度3 不等式的證明1.(典型例題)設(shè)函數(shù)()證明:當(dāng)0a1;()點(diǎn)P(xo,yo)(0 xo1)在曲線y=f(x)上,求曲線在點(diǎn)P處的切線與x軸和y軸的正向所圍成的三角形面積表達(dá)式(用x
15、o表示).(2)f曲線y=f(x)在點(diǎn)即專家把脈 在運(yùn)用不等式時(shí)應(yīng)考慮等號(hào)成立時(shí)是否符合條件.對(duì)癥下藥 ()證法一:因f(x)=證法二:()解法一:0 x0與a1.求證:b22(b+2c);答案:由題意得,當(dāng)x(-,x1)(x2,+)時(shí),f(x)0;x(x1,x2)時(shí)f,(x)1,(x2-x1)2-10, b22(b+2c)(3)在(2)的條件下,若t1+x11+t,t+1-x20,又tx1, t-x10,即t2+bt+cx1 .2已知數(shù)列問是否存在mN,使xm=2,并證明你的結(jié)論;答案:假設(shè)存在mN*,使xm=2,則2=xm-1=2, 同理可得xm-2=2, 以此類推有x1=2,這與x1=1
16、矛盾,故不存在mN*,使xm=2試比較xn與2的大小關(guān)系;設(shè)答案:當(dāng)n2時(shí),xn+1,-2=-2=-,則xn0,xn+1-2與xn-2符號(hào)相反,而x1=12,以此類推有:x2n-12;(3)命題角度4 不等式的解法1(典型例題)在R上定義運(yùn)算:xy=x(1-y),若不等式(x-a) (x+a)1,解關(guān)于x的不等式:考場(chǎng)錯(cuò)解專家把脈(2)問中兩邊約去(2-x),并不知2-x的符號(hào).對(duì)癥下藥(1)同錯(cuò)解中(1)當(dāng)1k0解集為x(1,2) (2,+ ); 當(dāng)k2時(shí),解集為x(1,2) (k,+ ).3.(典型例題)設(shè)函數(shù)f(x)=kx+2,不等式|f(x)|0時(shí),k2,當(dāng)k0,k-4.k=2或-4.
17、當(dāng)k=2時(shí)f(x)=2x+2,當(dāng)k=-4時(shí)f(x)=-4x+2再由解對(duì)數(shù)不等式。專家把脈在求k的值時(shí)分析討論不嚴(yán)密,上式中是在x(-1,2)時(shí)恒成立,而k的值并不能使之成立.對(duì)癥下藥 |kx+2|6, (kx+2)236,即k2x2+4kx-320.由題設(shè)可得解得k=-4, f(x)=-4x+2. 解得由解得x1,由得4(典型例題)設(shè)對(duì)于不大于考場(chǎng)錯(cuò)解A=x|a-bxa+b,故專家把脈 在求b的范圍時(shí),應(yīng)考慮必成立的條件,如才能上式恒成立.對(duì)癥下藥 A=x|a-bx0的解集是(1,+ ),則關(guān)于x的不等式的解集是( )A.(-,-1)(2,+ )B.(-1,2)C.(1,2)D(-,1) (2
18、,+ )答案: A解析:a0-且=1,0(x+1)(x-2)0 x22.若答案:(-1,cos)(-cos,1) 解析:a, 0sin201-x2sin2cos2x21,又cos0 -1xcos或-cosx0時(shí),原不等式為x1,x1當(dāng)x0且x0,x-1 綜上,可得x|x1命題角度5 不等式的綜合應(yīng)用1(典型例題)已知函數(shù)f(x)=ax-( )求a的值;()設(shè)0a考場(chǎng)錯(cuò)解(1)由于f(x)的最大值不大于又由,可得a=1.(),當(dāng)n=1時(shí),0a1,結(jié)論成立。假設(shè)專家把脈在證明不等式時(shí),運(yùn)用放縮法應(yīng)有理論依據(jù),不能套結(jié)論,而且放縮不能過(guò)大或過(guò)小.對(duì)癥下藥()解法:由于由得a=1.()證法一:當(dāng)可知,
19、對(duì)任何nN成立。證法三:由知當(dāng)n=k+1時(shí),不等式2.(典型例題)六一節(jié)日期間,某商場(chǎng)兒童柜臺(tái)打出廣告:兒童商品按標(biāo)價(jià)的80%出售;同時(shí),當(dāng)顧客在該商場(chǎng)內(nèi)消費(fèi)滿一定金額后,按如下方案獲得相應(yīng)金額的獎(jiǎng)券:(如表所示)消費(fèi)金額(元)200,400400,500500,700700,900獲獎(jiǎng)券的金額(元)3060100130依據(jù)上述方法,顧客可以獲得雙重優(yōu)惠.試問:若購(gòu)買一件標(biāo)價(jià)為1000元的商品,顧客得到的優(yōu)惠率是多少?對(duì)于標(biāo)價(jià)在500,800內(nèi)的商品,顧客購(gòu)買標(biāo)價(jià)為多少元的商品,可得到不小于的優(yōu)惠率?考場(chǎng)錯(cuò)解(1)設(shè)商品的標(biāo)價(jià)為x元,則500 x800,由已知得專家把脈商品的標(biāo)價(jià)為x元,而消費(fèi)
20、額在5000.8,8000.8之間,而不是500800之間.對(duì)癥下藥(1)同上設(shè)商品的標(biāo)價(jià)為x元,則500 x800,消費(fèi)額:4000.8x640.由已知得:或解不等式無(wú)解,得:625x750.專家會(huì)診1應(yīng)用不等式的性質(zhì)與幾個(gè)重要不等式求出數(shù)的最值,比較大小,討論參數(shù)的范圍等,一定要注意成立的條件,易忽視“一正、二定、三等?!?運(yùn)用不等式解決實(shí)際問題時(shí),首先將實(shí)際問題轉(zhuǎn)化為函數(shù)的最值問題,從而運(yùn)用不等式求最值,注意成立時(shí)的實(shí)際條件與不等式成立條件應(yīng)同時(shí)考慮??紙?chǎng)思維訓(xùn)練答案: D 解析:1,由倒數(shù)法則0balogtba=1,0logba|logab+logba|故選D2 已知不等式x2-2x+
21、a0時(shí),任意實(shí)數(shù)x恒成立,則不等式a2x+1ax2+2x-30 對(duì)xR恒成立1不等式(a2x+1ax2+2x-30)當(dāng)年廣告費(fèi)投入多少萬(wàn)元時(shí),企業(yè)年利潤(rùn)最大?答案: P=-()+495-24+495=415,當(dāng)且僅當(dāng)x=時(shí),即x=8時(shí),P有最大值415 萬(wàn)元探究開放題預(yù)測(cè)預(yù)測(cè)角度1 不等式的概念與性質(zhì)1下列命題正確的是 ( )解題思路利用均值不等式成立的條件判斷。解答D對(duì)于A,當(dāng)a、b同為負(fù)數(shù)時(shí)也成立;對(duì)于B,當(dāng)a、b、c中有一個(gè)為0,其余為正數(shù)時(shí)也成立;對(duì)于C,當(dāng)a、b、c(0,1)時(shí)也成立;D正確。2已知a=sin15.+cos15.,b=sin16.,則下列各式中正確的是 ( )解題思路
22、利用兩角和與差的公式化簡(jiǎn)b、a、然后再比較大小.解答B(yǎng)預(yù)測(cè)角度2不等式的解法1關(guān)于x的不等式x|x-a|2a2(a(-,0)的解集為 ( )A.-a,+ B.a,+ C.2a,a -a+ D.(- ,a)解題思路討論a、x的大小,去絕對(duì)值符號(hào).解答A當(dāng)xa,x2-ax-2a20, x-a.當(dāng)xa,不等式顯然無(wú)解.2.函數(shù)y=f(x)是圓心在原點(diǎn)的單位圓的兩段圓弧(如圖,與y軸無(wú)交點(diǎn)),則不等式f(x).即可求解。解答A由已知有f(x)為奇函數(shù),則原不等式變形為f(x)畫圖可知A正確,所以選A3函數(shù)則使g(x) f(x)的x的取值范圍是解題思路利用數(shù)形結(jié)合法.解答D用數(shù)形結(jié)合法,分別作出f(x)
23、=sinx和g(x)=-94.解關(guān)于x的不等式解題思路本題的關(guān)鍵不是對(duì)參數(shù)a進(jìn)行討論,而是取絕對(duì)值時(shí)必須對(duì)未知數(shù)進(jìn)行討論,得到兩個(gè)不等式組,最后對(duì)兩個(gè)不等式組的解集求并集,得出原不等式的解集。解答當(dāng)xa 時(shí),不等式可轉(zhuǎn)化為預(yù)測(cè)角度3 不等式的證明1已知定義域?yàn)?,1的函數(shù)f(x)同時(shí)滿足:(1)對(duì)于任意x0,1總有f(x) 0;(2)f(1)=1;(3)若x10,x20,x1+xz1,則有f(x1+x2) f(x1)+f(x2).()試求f(0)的值;()試求函數(shù)f(x)的最大值;()試證明:當(dāng)x解題思路(1)賦值法; (2)變形f(x2)=f(x2-x1)+x1,即可求函數(shù)f(x)的最大值;
24、解答()令得f(0) 0, f(0)=0.()任取()設(shè)y=f(x)的定義域?yàn)镽,當(dāng)x1且對(duì)任意的實(shí)數(shù)x,yR,有f(x+y)=f(x) f(y)成立,數(shù)列an滿足a1=f(0),且f(an+1)=(1) 判斷y=f(x)是否為單調(diào)函數(shù),并說(shuō)明理由;(2)(3)若不等式解題思路(1)利用函數(shù)的單調(diào)性證明;(2)裂項(xiàng)法求出Tn再解不等式;(3)利用函數(shù)的單調(diào)性求k的最大值.解答(1)設(shè)(3)由預(yù)測(cè)角度4 不等式的工具性1若直線2ax-by+2=0(a、b0)始終平分圓x2+y2+2x-4y+1=0的周長(zhǎng),則的最小值是 ( )A.4 B.2 C. D.解題思路利用重要不等式求最小值。解答A直線2a
25、x-by+2=0過(guò)圓心(-1,2), a+b=1,2.已知函數(shù)f(x)=ax2+8x+3(abc),已知f(1)=0,且存實(shí)數(shù)m,使f(m)=-a.試推斷f(x)在區(qū)間0,+上是否為單調(diào)函數(shù),并說(shuō)明你的理由;設(shè)g(x)=f(x)+bx,對(duì)于x1,x2R,且x1x2,若g(x1)=g(x2)=0,求|x1-x2|的取值范圍;求證:f(m+3)0.解題思路由二次函數(shù)的對(duì)稱軸兩邊為單調(diào)的性質(zhì)判斷;(2)由根與系數(shù)的關(guān)系求出a、b、c的關(guān)系,從而轉(zhuǎn)化為二次函數(shù)的最值;解答(1) f(m)=-a,mR. 方程ax2+bx+c+a=0有實(shí)根=b2-4a(a+c) 0f(1)=0, a+b+c=0,即a+c
26、=-b.b2-4a(-b)=b(b+4a) 0.abc, a0,c0.b0.x=f(x)在0,+上是增函數(shù).(2)據(jù)題意x1,x2是方程g(x)=0即ax2+2bx+c=0的兩實(shí)根.=(3)f(1)=0.設(shè)f(x)=a(x-1)(x-)4.在xOy平面上有一系列點(diǎn)P1(x1,y1),P2(x2,y2),Pn(xn,yn),對(duì)每個(gè)正整數(shù)n,點(diǎn)PN 位于函數(shù)y=x2(x0)的圖像上,以點(diǎn)Pn為圓心的圓Pn與x軸都相切,且圓Pn與圓PN+1又彼此相外切. 若x1=1,且xn+10的解集為 ( )A.x|-3x-1B.x|-3x2C.x|-3x3D.x|-1x1或1x0得,由題4函數(shù)f(x)是R上的增
27、函數(shù),A(0,1),B(3,1)是其圖像上的兩點(diǎn),那么|f(x+1)|1的解集是( )A.(1,4) B(-1,2)C.(- ,1) 4,+ D.(- ,-1) 2,+ 答案: B 易知過(guò)A、B兩點(diǎn)的直線即y=x-1,即f(x)=x-1是增函數(shù),由f(x+1)=(x+1)-1,得當(dāng) 5已知f(x)=A.x|1x3或x2C.x|1x2或3x4D.x|x0答案: C 解析:略6.設(shè)f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x0,且g(-3)=0,則不等式f(x)g(x)0的解集為 ( )A(-3,0) (3,+ )B.(-3,0) (0,3)C.(- ,-3) (3,+ )D.(- ,
28、-3) (0,3)答案: D 解析:設(shè)F(x)=f(x)g(x), F(-x)=f(-x)g(-x)=-f(x)g(x)=-F(x) F(x)為奇函數(shù) 又x0 x0時(shí),9(x)也為增函數(shù) F(-3)=f(-3)g(-3)=0 F(3)=-F(-3)=0 如圖為一個(gè)符合題意的圖象觀 察知9(x)=f(x),g(x)logb|x-4|的解集是_.答案:x|x0,所以2-bx在0,1上遞減,由已知可知0b1,所以原不等式等價(jià)于0|x+2|,x-4|,解得x|x0時(shí),f(x)=x+答案:依題意x-3,-1時(shí)f(x)=f(-x)=-x+=(),m=f(-1)=5,n=f(-2)=4,m-n=1, 9定義
29、符號(hào)函數(shù)sgnx=答案:-2解析:略;10已知關(guān)于x的不等式(1)a=4時(shí),求集合M;答案:當(dāng)a=4時(shí),原不等式可化為, 即4(x-)(x-2)(x+2)0,x(-,-2)(,2),故M為(-,-2)(,2)(2)若3M且5M,求實(shí)數(shù)a的取值范圍。答案:由3M得9或a, 由5M得0,1a25, 由、得1a,或9a25因此a的取值范圍是1,(9,25)11已知函數(shù)f(x)對(duì)任意實(shí)數(shù)P、q都滿足f(p+q)=f(p).f(q),且f(1)=(1)當(dāng)nN+時(shí),求f(n)的表達(dá)式;答案:解:由已知得答案:證明 由(1)可知?jiǎng)t 兩式相減得 (3)解 由(1)可知 則 故有12某村計(jì)劃建造一個(gè)室內(nèi)面積為8
30、00m2的矩形蔬菜溫室.在溫室內(nèi),沿左、右兩側(cè)與后側(cè)內(nèi)墻各保留1m寬的通道,沿前側(cè)內(nèi)墻保留3m寬的空地。當(dāng)矩形溫室的邊長(zhǎng)各為多少時(shí)?蔬菜的種植面積最大.最大種植面積是多少?答案:解:沒矩形溫室的左側(cè)邊長(zhǎng)為am,后側(cè)邊長(zhǎng)為bm,則ab=800(m) 蔬菜的種植面積S=(a-4)(b-2)=ab-4b-2a+8=808-2(a+2b) 所以S808-4=48(m2) 當(dāng)a=2b,即a=40(m),b=20(m)時(shí), S最大值=648(m2) 答:當(dāng)矩形溫室的左側(cè)邊長(zhǎng)為40m,后側(cè)邊長(zhǎng)為20m時(shí),蔬菜的種植面積最大,最大種植面積為648m213已知函數(shù)f(x)(xR)滿足下列條件:對(duì)任意的實(shí)數(shù).x1
31、,x2都有() 證明答案:任取x1,x2 及,x1x2,則由(x1-x2)2(x1-x2)f(x1)-f(x2) 和,|f(x1)-f(x2),|x1-x2| 可知(x1-x2)2(x1-x2)f(x1)-f(x2)|x1-x2|f(x1)-f(x2)1|x1-x2|2, 從而A1假設(shè)有b0a0,使得f(b0)=0,則由式知 0(a0-b0)2(a0-b0)f(a0)-f(b0)=0矛盾 不存在b0a0,使得f(b0)=0() 證明2;答案:由b=oa-f(a) 可知(6-a0)2=a-a0-f(a)2=(a-a0)2-2(a-a0)f(a)+2f(a)2 由f(a0)=0和式,得(a-a0)
32、f(a)=(a-a0) f(a)-f(a0)(a-a0)2 由f(a0)=0和式知,f(a)2=f(a)-f(a0)2(a-a0)2 由、代人式,得(b-a0)2(a-a0)2-22(a-a0)2+2(a-a0)2 =(1-2)(a-a0)2() 證明答案:由式可知f(b)2=f(b)-f(a)+f(a)2 =f(b)-f(a)2+2f(a)f(b)-f(a)+f(a)2 (b-a)2-2f(b)-f(a)+f(a)2 (用式) =2f(a)2-(b-a)f(b)-f(a)+f(a)2 2f(a)2-(b-a)2+f(a)2 (用) =2f(a)2-22f(a)2+f(a)2 =(1-2)f(
33、a)214已知函數(shù)f(x)=(1)設(shè)0|x|1,0|t|1,求證:|t+x|+|t-x|f(tx+1)|答案:f(x)=f(tx+1)=tx+ |f(tx+1)|=|t|+2=2,當(dāng)且僅當(dāng),|tx|=1時(shí),上式取等號(hào)0|x|1,0|tx|2s=(|t+x|+|t-x1)2=2(t2+x2)+2|t2-x2|-(|t+x|+|t-x|)2=2(t2+x2)+2|t2-x2|.當(dāng)|t|x|時(shí),s=4t24;當(dāng)|t|x|時(shí)s=4x24 |t+x|+|t-x|21f(tx+1)|即,|t+x|+|t-x|ac0.取b=3,a=2,c=1.解方程組專家把脈由圖看出的是長(zhǎng)度大小關(guān)系,在比較時(shí)坐標(biāo)值與長(zhǎng)度值
34、相混淆。對(duì)癥下藥C由圖形如此圖圓心在第二象限且a、b、c滿足球隊(duì)0ca-b,取c=1,a=2,b=-3解方程組得x=-2,y=-1,故選C.此題也可以討論ax+by+c=0在y軸截距及斜率與直線x-y+1=0進(jìn)行比較去解決。4(典型例題)由動(dòng)點(diǎn)P向圓x2+y2=1引兩條切線PA、PB,切點(diǎn)分別為A、B,APB=60.,則動(dòng)點(diǎn)P的軌跡方程為_.考場(chǎng)錯(cuò)解設(shè)A(x1,y2),B(x2,y2), PA的直線方程為x1x+y1y=1.PB的直線方程為x2x+y2y=1.又APB=60.即兩直線之間夾角為60。,從而求出x1、y1、x2、y2的關(guān)系. 聯(lián)立兩方程解得x2+y2=3.專家把脈引方法過(guò)于繁瑣復(fù)
35、雜,使運(yùn)算很易出錯(cuò),應(yīng)考慮此特殊性。對(duì)癥下藥如圖APB=60.,OP平分APBAPO=30.,在RtAOP中,|OA|=1為定值|OP|=2故P軌跡為以O(shè)為圓心,以2為半徑的圓x2+y2=4故正確答案:x2+y2=45.(典型例題)曲線C:考場(chǎng)錯(cuò)解曲線C的普通方程可化為:x2+(y+1)222=1,與直線x+y+a=0有公共點(diǎn),故聯(lián)立得消去x.2y2222+2(a+1)y+a222=0,有公共點(diǎn)故專家把脈忽略了直線與圓相切時(shí)的情況。對(duì)癥下藥專家會(huì)診兩直線平行與垂直的充要條件在解題中的應(yīng)用。夾角與距離公式是求距離或角、斜率的最值問題的工具.一定要注意公式的運(yùn)用及條件.關(guān)于直線對(duì)稱問題,即點(diǎn)關(guān)于直
36、線對(duì)稱,或直線關(guān)于直線對(duì)稱.是命題熱點(diǎn)。考場(chǎng)思維訓(xùn)練1直線l1:x+3y-7=0 、l2:kx-y-2=0與x軸、y軸的正半軸所圍成的四邊形有外接圓,則k的值等于 ( )A.-3 B.3 C.-6 D.6答案: B解析:略2已知點(diǎn)M是點(diǎn)P(4,5)關(guān)于直線y=3x-3的對(duì)稱點(diǎn),則過(guò)點(diǎn)M且平行于直線y=3x+3的直線方程是_.答案: y=3x+1解析:略3若曲線x2+y2+a2x+(1-a2)y-4=0關(guān)于直線y-x=0對(duì)稱的圖形仍是其本身,則實(shí)數(shù)a= ( )答案: B解析:略4求直線l2:7x-y+4=0到l1:x+y-2=0的角平分線的方程。答案:解:法一:設(shè)l2到l1角平分線J的斜率為k,
37、 k1=-1,k2=7 ,解之得k=-3或k=,由圖形可知k0時(shí),z最大,當(dāng)B1,當(dāng)x=1,y0 3已知兩點(diǎn)A(-1,0),B(0,2),若點(diǎn)P是圓(x-1)2+( )3已知兩點(diǎn)A(-1,0),B(0,2),若點(diǎn)P是圓 y2=1上的動(dòng)點(diǎn),則ABP面積的最大值和最小值分別為 ( ) 答案: B 解析:過(guò)圓心C作CMAB于M,設(shè)CM交圓于P、Q兩點(diǎn),從圖可以看出,ABP和ABQ分別為最大和最小值,可以求得最大值和最小值分別為(4+), (4-),所以選B 4 如圖8 5,已知點(diǎn)A、B的坐標(biāo)分別是(-3,0),(3,0),點(diǎn)C為線段AB上任一點(diǎn),P、Q分別以AC和BC為直徑的兩圓 O1、O 2的外公
38、切線的切點(diǎn),求線段PQ的中點(diǎn)的軌跡方程.答案:解:作MCAB交PQ于點(diǎn)M,則MC是兩圓的公切線,|MC|=|MQ|,|MC|=|MP|,即M為PQ的中點(diǎn)設(shè)M(x,y),則點(diǎn)C、O1、O2的坐標(biāo)分別是(x,0)、(, 0)、(,0)連O1M,O2M,由平幾知識(shí)得:O1MO2=90, 有|O1M|2+|O2M|2=|O1O2|2,即: (x-)2+y2+(x-)2+y2 =(-)2,化簡(jiǎn)得x2+4y2=9. 又點(diǎn)C(x,0)在線段AB上,且AC、BC是圓的直徑, -3x3故所求的軌跡方程為x2+4y2=9(-3x3)命題角度5 直線與圓1(典型例題)已知直線L過(guò)點(diǎn)(-2,0,當(dāng)直線L) 與圓有兩個(gè)
39、交點(diǎn)時(shí),其斜率k取值范圍是 ( ) 考場(chǎng)錯(cuò)解 設(shè)此直線為圓心到直線的距離剛好好等于半徑(即相切)時(shí) .故選D . 專家把脈 計(jì)算出見答案中有此結(jié)果, 便盲目選出答案 .并沒有開方算出對(duì)癥下藥 可設(shè)直線方程為代入圓的方程中,用選C .2. (典型例題) “ a=b” j是“直線與圓 ( )充分不必要條件B 必要不充分條件C 充分必要條件D 既不充分又不必要條件考場(chǎng)錯(cuò)解 當(dāng) 時(shí)圓心坐標(biāo)為圓心到直線的距離為與半徑楊等,故是直線和圓相切的充分人條件,同理不直線與圓相切時(shí),圓心到的距離為故是直線與圓相切的充分必要條件. 專家把脈 在運(yùn)用點(diǎn)到直線的距離公式時(shí),應(yīng)先變?yōu)?再計(jì)算. 這刊里y的系數(shù)應(yīng)為- 1而
40、不是未變形前的1.對(duì)癥下藥 當(dāng),時(shí)圓心到直線=0的距離為不一定剛好等于,故不是充分條件, 當(dāng)直線與圓相切時(shí),到直線的距離應(yīng)等于半徑, 即故也不是必要,綜合得是直線與圓相切的既不充分也不必要條件.(典型例題) 圓心為( 1 ,2 ) 且與直線7=0相切的圓的方程為_.考場(chǎng)錯(cuò)解 圓心到直線的距離等于半徑即圓的方程為專家把脈 在算出r后,往中代入時(shí)、忘記后面是r2.對(duì)癥下藥 由圓心到直線的距離等于半徑得r = 2.4. (典型例題) 設(shè)P 0 是一常數(shù),過(guò)點(diǎn)Q(2P,0)的直線與拋物線交于相導(dǎo)兩點(diǎn)A、B 以線段AB 為直徑作圓H(H為圓心).試證拋物線頂點(diǎn)在圓H的圓周上;并求圓H的面積最小時(shí)直線AB
41、的方程.考場(chǎng)錯(cuò)解 設(shè)AB直線方程為式中聯(lián)立消去由專家把脈 時(shí),,雖然不成立,而時(shí)說(shuō)明k不存在,即直線AB.對(duì)癥下藥 法一;由題意,直線AB不能是水平線,故可設(shè)直線方程為:又設(shè)A則其坐標(biāo)滿足 消去x得,由此得因此在圓H的圓周上.又題意圓心 是 AB 中心點(diǎn),故由前已證,OH應(yīng)是圓H的半徑,且|OH|=從而當(dāng)k=0時(shí),圓H的半徑最小,亦使圓H和面積最小,此時(shí),直線AB的方程為:法二:由題意,直線AB不能是水平線,故可設(shè)直線方程為:則其坐標(biāo)滿足 故得A、B所在圓的方程明顯的,O,(0,0)滿足上面方程A、B、O三點(diǎn)均在上面方程所表示的圓上,又知A、B中點(diǎn)H的坐標(biāo)為而前面圓的方程可以可表示為故|OH|
42、為上面圓的半徑R,從而以AB為直徑直圓必過(guò)點(diǎn)O(0,0).又 J最小.從而圓的面積最小,此時(shí)直線ABR的方程為:法三:,同解法得O必在圓周上,又直徑|AB|=上式當(dāng) 時(shí),等號(hào)成立,直徑|AB|最小,從而圓面積最小,此時(shí)直線AB的方程為專家會(huì)診 1直線與圓、圓與圓的位置關(guān)系判斷時(shí)利用幾何法(即圓心到直線,圓心與圓心之間的距離,結(jié)合直角三角形求解.)2.有關(guān)過(guò)圓外或圓上一點(diǎn)的切線問題,要熟悉切線方程的形式考場(chǎng)思維訓(xùn)練 1 已知直線ax+by+c=0(abc0)與圓x2+y2=1相切,則三條邊分別為,|a|、|b|、|c|的三角形是( ) A.銳角三角形 B直角三角形 C鈍角三角形 D不存在 答案:
43、 B 解析:2 若a2+b2-2c2=0,則直線ax+by+c=0被x2+y2=1所截得的弦長(zhǎng)為 ( ) A B1 C D 答案: D 解析:設(shè)圓心到直線的距離為d,弦長(zhǎng)為l,則d2= ,l=23 如圖,已知點(diǎn)F(0,1),直線L:y=-2,及圓C:x2+(y-3)2=1 (1)若動(dòng)點(diǎn)M到點(diǎn)F的距離比它到直線L的距離小1,求動(dòng)點(diǎn)M的軌跡E的方程; 答案:解x2=4y x1x2=-4 P(2,1)Smin= (2)過(guò)點(diǎn)F的直線g交軌跡E于C(x1,y1)、H(x2,y2)兩點(diǎn),求證:xlx2為定值;(3)過(guò)軌跡E上一點(diǎn)P作圓C的切線,切點(diǎn)為A、B,要使四邊形PACB的面積S最小,求點(diǎn)P的坐標(biāo)及S
44、的最小值 4 如圖8-9,已知圓C:(x+4)2+y2=4圓D的圓心D在y軸上且與圓C外切圓D與y軸交于A、B兩點(diǎn),點(diǎn)P為(-3,0) (1)若點(diǎn)D坐標(biāo)為(0,3),求APB的正切值;答案:|CD|=5,(O為原點(diǎn))且 圓D與圓C外切, 圓D半徑r=5-2=3, 此時(shí),A、B坐標(biāo)分別為(0,0)、(0,6), PA在x軸上,且BP的斜率k=2, tanAPB=2 (2)當(dāng)點(diǎn)D在y軸上運(yùn)動(dòng)時(shí),求APB的最大值;答案:設(shè)D的坐標(biāo)為(0,a),圓D的半徑為r,則(r+2)2=16+a2. 設(shè)PA、PB的斜率為k1、k2,又A、B的坐標(biāo)分別為(0,a-r)、(0,a+r)則 k1=,tanAPB= 由
45、解出a2代人,得tanAPB=而8r-6為單調(diào)增函數(shù),r2,+tanAPB()APB的最大值為arttan . (3)在x軸上是否存在定點(diǎn)Q,當(dāng)圓D在y軸上運(yùn)動(dòng)時(shí),AQB是定值?如果存在,求出點(diǎn)Q坐標(biāo);如果不存在,說(shuō)明理由答案:假設(shè)存在Q點(diǎn),設(shè)Q(b,0),QA、QB的斜率分別為 k1、k2,則中 k1 tanAQB=將a2=(r+2)2-16代人上式,得 tanAQB=欲使AQB大小與r無(wú)關(guān),則應(yīng)有b2=12,即b=2, 此時(shí)tanAQB=,AQB=60,存在Q點(diǎn),當(dāng)圓D變動(dòng)時(shí),AQB為定值60,這Q點(diǎn)坐標(biāo)為(2,0)探究開放題預(yù)測(cè)預(yù)測(cè)角度1 直線的方程 1求與直線3x+4y+12=0平行,
46、且與坐標(biāo)軸構(gòu)成的三角形面積是24的直線乙的方程 解題思路 滿足兩個(gè)條件才能確定一條直線一般地,求直線方程有兩個(gè)解法,即用其中一個(gè)條件列出含待定系數(shù)的方程,再用另一個(gè)條件求出此參數(shù) 解答 解法一:先用“平行”這個(gè)條件設(shè)出乙的方程為3x+4y+m=0再用“面積”條件去求m,直線l交 x軸于A(-,0),交了軸于B(0,-)由=24,得m=24,代入得所求直線的方程為:3x+4y24=0解法二:先用面積這個(gè)條件列出l的方程,設(shè)l在x軸上截距離a,在y軸上截距b,則有,|ab|=24,因?yàn)橐业膬A角為鈍角,所以a、b同號(hào),|ab|=ab,l的截距式為,即48x+a2y-48a=0又該直線與3x+4y+2
47、=0平行, a=18代入得所求直線l的方程為3x+4y24=O 2設(shè)正方形ABCD(A、B、C、D順時(shí)針排列)的外接圓方程為x2+y2-6x+a=0(a9),C、D點(diǎn)所在直線l的斜率為 (1)求外接圓圓心M點(diǎn)的坐標(biāo)及正方形對(duì)角線AC、BD的斜率; (2)如果在x軸上方的A、B兩點(diǎn)在一條以原點(diǎn)為頂點(diǎn),以x軸為對(duì)稱軸的拋物線上,求此拋物線的方程及直線l的方程; (3)如果ABCD的外接圓半徑為2 ,在x軸上方的A、B兩點(diǎn)在一條以x軸為對(duì)稱軸的拋物線上,求此拋物線的方程及直線l的方程 解題思路 (1)利用斜率公式求傾斜角(2)(3)運(yùn)用軌跡法 解答 (1)由(x-3)2+y2=9-a(a0),由于A
48、、B兩點(diǎn)在拋物線上, 解出:r=,p= . 得拋物線方程為y2=x.由此可知A點(diǎn)坐標(biāo)為(1,1),且A點(diǎn)關(guān)于M(3,0)的對(duì)稱點(diǎn)C的坐標(biāo)是(5,-1),直線l的方程為y-(-1)=(x-5),,即x-3y-8=0 (3)將圓方程(x-3)2+y2=(2)2分別與AC、BD的直線方程:y=(x-2),y=2(x-3)聯(lián)立,可解得A(-1,2), B(5,4)設(shè)拋物線方程為了y2=a(x-m)(*)將A(-1,2)、B (5,4)的坐標(biāo)代入(*),得解得:a=2,m=-3, 拋物線的方程為y2=2(x+3) A(-1,2),點(diǎn)關(guān)于M(3,0)的觀點(diǎn)為C(7,-2), 故直線l的方程為y-(-2)=
49、(x-7),即x-3y- 13=0 預(yù)測(cè)角度2兩直線的位置關(guān)系 1若直線mx+y+2=0與線段AB有交點(diǎn),其中A(-2,3),B(3,2),求實(shí)數(shù)m的取值范圍解題思路 運(yùn)用數(shù)形結(jié)合的思想來(lái)解,直線mx+y+ 2=0的斜率-m應(yīng)為傾角的正切,而當(dāng)傾角在(0,90)或 (90,180)內(nèi),角的正切函數(shù)都是單調(diào)遞增的,因此當(dāng)直線在ACB內(nèi)部變化時(shí),眾應(yīng)大于或等于kBC,或者k小于或等于kAC,當(dāng)A、B兩點(diǎn)的坐標(biāo)變化時(shí),求出m的范圍解答 直線m+y+2=0過(guò)一定點(diǎn)C(0,-2),直線mx+y+2=0實(shí)際上表示的是過(guò)定點(diǎn)(0,-2)的直線系,因?yàn)橹本€與線段AB有交點(diǎn),則直線只能落在ABC的內(nèi)部,設(shè)BC、
50、CA這兩條直線的斜率分別為k1、k2,則由斜率的定義可知,直線mx+y+2=0的斜率A應(yīng)滿足kk1,或kk2,A(-2,3) B(3,2) 2如圖8-11,已知:射線OA為y=kx(k0,x0),射線OB為了y=-kx(x0),動(dòng)點(diǎn)P(x,y)在AOx的內(nèi)部,PMOA于M,PNkOB于N,四邊形ONPM的面積恰為k (1)當(dāng)k為定值時(shí),動(dòng)點(diǎn)P的縱坐標(biāo)y是橫坐標(biāo)x的函數(shù),求這個(gè)函數(shù)y=f(x)的解析式; (2)根據(jù)A的取值范圍,確定y=f(x)的定義域 解題思路 (1)設(shè)點(diǎn)的坐標(biāo)而不求,直接轉(zhuǎn)化 (2)垂足N必須在射線OB上,所以必須滿足條件:y0,b0)則|OM|=a,|ON|=b 由動(dòng)點(diǎn)P在
51、AOx的內(nèi)部,得0y0,y= (2)由0ykx,得0kx 當(dāng)k=1時(shí),不等式為0 當(dāng)0k1時(shí),由不等式得x2,x1時(shí),由不等式得x2(*)x 但垂足N必須在射線OB上,否則O、N、P、M四點(diǎn)不能組成四邊形,所以還必須滿足條件:yx,將它代入函數(shù)解析式,得1),或xA(0; 當(dāng)0k1時(shí),定義域?yàn)閤|x1時(shí),定義域?yàn)閤|x0,即t0,而且直線l往右平移時(shí),t隨之增大當(dāng)直線l平移至ll的位置時(shí),直線經(jīng)過(guò)可行域上的點(diǎn) B,此時(shí)所對(duì)應(yīng)的t最大;當(dāng)l在l0的左上方時(shí),直線l上的點(diǎn)(x,y)滿足2x-y0,即t0,而且直線l往左平移時(shí),t隨之減小當(dāng)直線l平移至l2的位置時(shí),直線經(jīng)過(guò)可行域上的點(diǎn)C,此時(shí)所對(duì)應(yīng)
52、的t最小由 解得點(diǎn)B的坐標(biāo)為(5,3);由解得點(diǎn)C的坐標(biāo)為(1,)所以,z最大值=25-3=7;z最小值=22已知三種食物P、Q、R的維生素含量與成本如下表所示食物P食物Q食物R維生素A(單位/kg)400600400維生素B(單位/kg)800200400成本(元/kg)654 現(xiàn)在將xkg的食物P和ykg的食物Q及zkg的食物 R混合,制成100kg的混合物如果這100kg的混合物中至少含維生素A44000單位與維生素B48000單位,那么 x、y、z為何值時(shí),混合物的成本最小? 解題思路 由x+y+z=100,得z=100-x-y,所以上述問題可以看作只含x、y兩個(gè)變量設(shè)混合物的成本為k
53、元,那么k=6x+5y+4(100-x-y)=2x+y+400于是問題就歸結(jié)為求在已知條件下的線性規(guī)劃問題 解答 已知條件可歸結(jié)為下列不等式組: 在平面直角坐標(biāo)系中,畫出不等式組所表示的平面區(qū)域,這個(gè)區(qū)域是直線x+y=100,y=20,2x-y=40圍成的一個(gè)三角形區(qū)域EFG(包括邊界),即可行域,如圖所示的陰影部分設(shè)混合物的成本為k元,那么k=6x+5y+4(100- x-y)=2x+y+400作直線l0:2x+y=0,把直線l0向右上方平移至l1位置時(shí),直線經(jīng)過(guò)可行域上的點(diǎn)E,且與原點(diǎn)的距離最小,此時(shí)2x+y的值最小,從而A的值最小 由得 即點(diǎn)E的坐標(biāo)是(30,20) 所以,k最小值=23
54、0+20+400=480(元),此時(shí)z= 100-30-20=50答:取x=30,y=20,z=50時(shí),混合物的成本最小,最小值是480元預(yù)測(cè)角度4直線與圓 1已知點(diǎn)T是半圓O的直徑AB上一點(diǎn),AB=2、OT=t (0t1),以AB為直腰作直角梯形AABB,使AA垂直且等于AT,使BB垂直且等于BT,AB交半圓于P、Q兩點(diǎn),建立如圖所示的直角坐標(biāo)系 (1)寫出直線AB的方程; (2)計(jì)算出點(diǎn)P、Q的坐標(biāo); (3)證明:由點(diǎn)P發(fā)出的光線,經(jīng)AB反射后,反射光線通過(guò)點(diǎn)Q 解題思路 (1)由兩點(diǎn)式可求;(2)聯(lián)立方程即可求出點(diǎn)P、Q的坐標(biāo); (3)要證由點(diǎn)P發(fā)出的光線經(jīng)點(diǎn)T反射,反射光線通過(guò)點(diǎn)Q,即
55、只要證直線PT的斜率和直線QT的斜率互為相反數(shù) 解答 (1)顯然A(1,1-t),B(-1,l+t),于是直線AB,的方程為了y=tx+1; (2)由方程組 解出P(0,1)、(3)由直線PT的斜率和直線QT的斜率互為相反數(shù)知,由點(diǎn)P發(fā)出的光線經(jīng)點(diǎn)T反射,反射光線通過(guò)點(diǎn)Q 2已知M:x2+(y-2)2=1,Q是x軸上的動(dòng)點(diǎn),QA、QB分別切OM于A、B兩點(diǎn), (1)如果|AB|=,求直線MQ的方程; (2)求動(dòng)弦AB的中點(diǎn)P的軌跡方程 解題思路 (1)由射影定理知:|MB|2=|MP| |MQ|,得|MQ|=3,在RtMOQ,求出OQ再求直線MQ的方程;利用點(diǎn)M、P、Q在一直線上,斜率相等求動(dòng)
56、弦AB的中點(diǎn)P的軌跡方程解答 (1)由|AB|=,可得|MP|=,由射影定理,得|MB|2=|MP|MQ|,得,|MQ|=3,在RtAMOQ中, |OQ|= 故a=或a=-所以直線MQ方程是 2x+y-2=0或2x-y+2=0;(2)連接MB、MQ,設(shè)P(x,y)、p(a,0),由點(diǎn)M、P、Q在一直線上,得 ,(*)由射影定理得 |MB|2=|MP|MQ|,即 ,(答案:)把(*)及(答案:)消去a,并注意到y(tǒng)0,x20由 解得k23由雙曲線左準(zhǔn)線方程 x=-1且e=2,有|AMl|BM1|=e|x1+1|e|x2+1|=4x1x2+(x1+x2)+1=4k2-30,|AM1|BM1|100又
57、當(dāng)直線傾斜角等于 時(shí),A(4,y1)、B(4,y2),|AM1|= |BM1|=e(4+1)=10,|AM1|BM1|=100故 |AM1|BM1|100考點(diǎn)高分解題綜合訓(xùn)練 說(shuō)明:14解析:略 1 方程 (R且1)表示的曲線是 ( ) A以點(diǎn)M1(x1,y1)、M2(x2,y2)為端點(diǎn)的線段 B過(guò)點(diǎn)M1(x1,y1)、M2(x2,y2)的直線 C過(guò)點(diǎn)Ml(x1,y1)、M2(x2,y2)兩點(diǎn)的直線,去掉點(diǎn)M1的部分 D過(guò)點(diǎn)M1(x1,y1)、M2(x2,y2)兩點(diǎn)的直線去掉M2的部分 答案: D2 直線l經(jīng)過(guò)A(2,1)、B(1,m2)(mR)兩點(diǎn),那么直線l的傾斜角的取值范圍是 ( ) A
58、0, B0,(,) C0, D0, 答案: B3 曲線y=1+,x-2,2與直線y=k(x-2)+4有兩個(gè)交點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是 ( ) 答案: D4 若x、y滿足x2+y2-2x+4y=0,則x-2y的最大值是 ( ) 答案: C5 使可行域?yàn)榈哪繕?biāo)函數(shù)z=ax+by(ab0),在x=2,y=2取得最大值的充要條件是 ( )A |a|b B |a|b| C. |a|b D |a|b| 答案: A 解析:畫出可行區(qū)域,直線l:ax+by=0的斜率為-,要使目標(biāo)函數(shù)z=ax+by在x=2,y=2時(shí),取得最大值,必須且只需|-|1,且直線l向上平移時(shí),縱截距變大,所以必須且只需|-|1且 b0
59、 6 已知向量a=(2cos,2sina),b=(3cos,3sin),a與b的夾角為60,則直線xcos-ysin+=0與圓(x-cos)2+(y+sin)2=的位置關(guān)系是 ( ) A.相切 B相交C相離 D隨,的值而定 答案: C 解析:略7 當(dāng)x,y滿足約束條件 (k為常數(shù))時(shí),能使z=x+3y的最大值為12的k的值為 ( ) A-9 B9C-12 D12 答案: A 解析:畫出線性約束條件所表示的平面區(qū)域,由圖可知,目標(biāo)函數(shù)y=-的圖像過(guò)直線y=x與2x+y+k=0的交點(diǎn)時(shí),z最大,解得交點(diǎn)為(-,-),得z=12,所以選A.說(shuō)明:811解析:略8 已知點(diǎn)M(-3,0)、N(3,0)、
60、O(1,0),C與直線MN切于點(diǎn)B,過(guò)M、N與C相切的兩直線相交于點(diǎn)P, 則P點(diǎn)的軌跡方程為 ( ) Ax2-=1 Bx2-=1(x1) Cx2+=1Dx2+=1 答案: B9 有下列4個(gè)命題: 兩直線垂直的充要條件是k1k2=-1; 點(diǎn)M(x0,y0)在直線Ax+By+C=0外時(shí),過(guò)點(diǎn)M(x0,y0)與直線Ax+By+C=0(AB0)平行的直線方程為A(x-x0)+B(y-y0)=0; 直線l1:y=2x-1到l2:y=x+5的角是; 兩平行直線Ax+By+C1=0與Ax+By+C2=0間的距離是d=其中正確的命題有 ( ) A BC D以上答案均對(duì) 答案: C10 圓x2+y2-4x+2y
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年新式住宅房地產(chǎn)買賣協(xié)議范本
- 2024年外國(guó)人就業(yè)服務(wù)協(xié)議模板
- 生態(tài)旅游休閑度假區(qū)項(xiàng)目可行性研究報(bào)告
- 鐵藝圍墻施工方案
- 幼兒園承建合同范本
- 房產(chǎn)交易補(bǔ)充協(xié)議:2024年修訂
- 2023-2024(2)濱海校區(qū)大學(xué)生創(chuàng)新與創(chuàng)業(yè)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 技術(shù)許可專利權(quán)合同范本
- 高等數(shù)學(xué)T(2020級(jí))學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 數(shù)據(jù)庫(kù)系統(tǒng)概論學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- CTD申報(bào)資料撰寫模板:模塊三之3.2.S.4原料藥的質(zhì)量控制
- 大學(xué)生視覺傳達(dá)職業(yè)規(guī)劃
- 人工智能算力中心平臺(tái)建設(shè)及運(yùn)營(yíng)項(xiàng)目可行性研究報(bào)告
- 中國(guó)民航發(fā)展史智慧樹知到期末考試答案章節(jié)答案2024年中國(guó)民航大學(xué)
- 口腔常見疾病的診治
- MOOC 人像攝影-中國(guó)傳媒大學(xué) 中國(guó)大學(xué)慕課答案
- MOOC 計(jì)算機(jī)組成原理-電子科技大學(xué) 中國(guó)大學(xué)慕課答案
- 2024年江蘇無(wú)錫市江陰市江南水務(wù)股份有限公司招聘筆試參考題庫(kù)含答案解析
- 中學(xué)教材、教輔征訂管理制度
- (高清版)DZT 0213-2002 冶金、化工石灰?guī)r及白云巖、水泥原料礦產(chǎn)地質(zhì)勘查規(guī)范
- 消防安全評(píng)估消防安全評(píng)估方案
評(píng)論
0/150
提交評(píng)論