版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、晶體結(jié)構(gòu)1、熟悉理想晶體微觀結(jié)構(gòu)的長程有序性和周期性,晶體的宏觀對稱性及基于對稱性的晶體結(jié)構(gòu)的分類;2、掌握晶體原胞;晶向、晶面及其標(biāo)志,熟悉晶體的宏觀對稱性(對稱操作和對稱元素)。3、晶體對稱性與晶體結(jié)構(gòu)的關(guān)系,掌握晶體的七大晶系、十四種布拉菲點陣。重點:晶體原胞;晶向、晶面及其標(biāo)志1晶體結(jié)構(gòu):原子規(guī)則排列,主要體現(xiàn)是原子排列具有周期性,或者稱長程有序。有此排列結(jié)構(gòu)的材料為晶體。晶體中原子、分子規(guī)則排列的結(jié)果使晶體具有規(guī)則的幾何外形,X射線衍射已證實這一結(jié)論。非晶體結(jié)構(gòu):不具有長程有序。有此排列結(jié)構(gòu)的材料為非晶體。了解固體結(jié)構(gòu)的意義: 固體中原子排列形式是研究固體材料宏觀性質(zhì)和各種微觀過程的
2、基礎(chǔ)。 晶體結(jié)構(gòu)固體的結(jié)構(gòu)分為: 非晶體結(jié)構(gòu) 多晶體結(jié)構(gòu) 1.1 晶體結(jié)構(gòu)2晶體內(nèi)部結(jié)構(gòu)概括為是由一些相同點在空間有規(guī)則作周期性無限分布,這些點的總體稱為點陣。(布拉菲點陣)(該學(xué)說正確地反映了晶體內(nèi)部結(jié)構(gòu)長程有序特征,后來被空間群理論充實發(fā)展為空間點陣學(xué)說,形成近代關(guān)于晶體幾何結(jié)構(gòu)的完備理論。)1.1.1 空 間 點 陣一、布喇菲的空間點陣學(xué)說3關(guān)于結(jié)點的說明: 當(dāng)晶體是由完全相同的一種原子組成,結(jié)點可以是原子本身位置。 當(dāng)晶體中含有數(shù)種原子,這數(shù)種原子構(gòu)成基本結(jié)構(gòu)單元(基元),結(jié)點可以代表基元重心,原因是所有基元的重心都是結(jié)構(gòu)中相同位置,也可以代表基元中任意點子 結(jié)點示例圖1 . 點陣空間
3、點陣學(xué)說中所稱的點,代表著結(jié)構(gòu)中相同的位置,也為結(jié)點,也可以代表原子周圍相應(yīng)點的位置。4晶體由基元沿空間三個不同方向,各按一定的距離周期性地平移而構(gòu)成,基元每一平移距離稱為周期。在一定方向有著一定周期,不同方向上周期一 般不相同?;揭平Y(jié)果:點陣中每個結(jié)點周圍情況都一樣。2 . 點陣學(xué)說概括了晶體結(jié)構(gòu)的周期性53 . 晶格的形成通過點陣中的結(jié)點,可以作許多平行的直線族和平行的晶面族,點陣成為一些網(wǎng)格-晶格。6 平行六面體晶胞概念的引出: 由于晶格周期性,可取一個以結(jié)點為頂點,邊長等于該方向上的周期的平行六面體作為重復(fù)單元,來概括晶格的特征。即每個方向不能是一個結(jié)點(或原子)本身,而是一個結(jié)點
4、(或原子)加上周期長度為a的區(qū)域,其中a叫做基矢 。這樣的重復(fù)單元稱為晶胞。7 晶胞(重復(fù)單元)的選取規(guī)則 反映周期性特征:只需概括空間三個方向上的周期大小,原胞可以取最小重復(fù)單元(原胞或稱為初基晶胞),結(jié)點只在頂角上。反映對稱性特征:晶體都具有自己特殊對稱性。結(jié)晶學(xué)上所取晶胞體積不一定最小,結(jié)點不一定只在頂角上,可以在體心或面心上(晶體學(xué)晶胞);晶胞邊長總是一個周期,并各沿三個晶軸方向;晶胞體積為原胞體積的整數(shù)倍數(shù)。 8引出晶胞的意義:三維格子的周期性可用數(shù)學(xué)的形式表示如下: T(r)=T(r+l1a1+l2a2+l2a3)r為重復(fù)單元中任意處的矢量;T為晶格中任意物理量;l1、l2、l3是
5、整數(shù),a1、a2、a3是重復(fù)單元的邊長矢量。為進行固體物理學(xué)中的計算帶來很大的方便。位矢RrR+r9布喇菲點陣的特點: 每點周圍情況都一樣。是由一個結(jié)點沿三維空間周期性平移形成。 晶體的基元中包含兩種或兩種以上原子,每個基元中,相應(yīng)的同種原子各構(gòu)成和結(jié)點相同網(wǎng)格-子晶格(或亞晶格)。 復(fù)式格子(或晶體格子)是由所有相同結(jié)構(gòu)子晶格相互位移套構(gòu)形成。4 .結(jié)點的總體-不喇菲點陣或不喇菲格子10晶體格子(簡稱晶格):晶體中原子排列的具體形式。原子規(guī)則堆積的意義:把晶格設(shè)想成為原子規(guī)則堆積,有助于理解晶格組成,晶體結(jié)構(gòu)及與其有關(guān)的性能等。二 、 晶 格 的 實 例1. 簡單立方晶格2. 體心立方晶格3
6、. 原子球最緊密排列的兩種方式11特點:層內(nèi)為正方排列,是原子球規(guī)則排列的最簡單形式;原子層疊起來,各層球完全對應(yīng),形成簡單立方晶格;這種晶格在實際晶體中不存在,但是一些更復(fù)雜的晶格可以在簡單立方晶格基礎(chǔ)上加以分析。 原子球的正方排列簡單立方晶格典型單元1. 簡單立方晶格12簡單立方晶格的原子球心形成一個三維立方格子結(jié)構(gòu),整個晶格可以看作是這樣一個典型單元沿著三個方向重復(fù)排列構(gòu)成的結(jié)果。 簡單立方晶格單元沿著三個方向重復(fù)排列構(gòu)成的圖形132. 體心立方晶格 體心立方晶格的典型單元排列規(guī)則:層與層堆積方式是上面一層原子球心對準下面一層球隙,下層球心的排列位置用A標(biāo)記,上面一層球心的排列位置用B標(biāo)
7、記,體心立方晶格中正方排列原子層之間的堆積方式可以表示為 : AB AB AB AB體心立方晶格的堆積方式14體心立方晶格的特點:為了保證同一層中原子球間的距離等于A-A層之間的距離,正方排列的原子球并不是緊密靠在一起;由幾何關(guān)系證明,間隙=0.31r0,r0為原子球的半徑。具有體心立方晶格結(jié)構(gòu)的金屬:Li、Na 、K、 Rb、 Cs、 Fe等,15密排面:原子球在該平面內(nèi)以最緊密方式排列。堆積方式:在堆積時把一層的球心對準另一層球隙,獲得最緊密堆積,可以形成兩種不同最緊密晶格排列。AB AB AB排列(六角密排晶格)ABC ABC ABC排列(立方密堆)3.原子球最緊密排列的兩種方式16前一
8、種為六角密排晶格,(如Be、Mg、Zn、Cd),后一種晶格為立方密排晶格,或面心立方晶格(如Cu、Ag、Au、Al) 面心立方晶格 (立方密排晶格) 面心(111)以立方密堆方式排列17 面心立方晶體(立方密排晶格)18六方密堆晶格的原胞19、布喇菲格子與復(fù)式格子把基元只有一個原子的晶格,叫做不喇菲格子;把基元包含兩個或兩個以上原子的,叫做復(fù)式格子。注:如果晶體由一種原子構(gòu)成,但在晶體中原子周圍的情況并不相同(例如用X射線方法,鑒別出原子周圍電子云的分布不一樣),則這樣的晶格雖由一種原子組成,但不是不喇菲格子,而是復(fù)式格子。原胞中包含兩個原子。20注:結(jié)點的概念以及結(jié)點所組成的不喇菲格子的概念
9、,對于反映晶體中的周期性是很有用的?;胁煌铀鶚?gòu)成的集體運動??筛爬閺?fù)式格子中各個子晶格之間的相對運動。固體物理在討論晶體內(nèi)部粒子的集體運動時,對于基元中包含兩個或兩個以上原子的晶體,復(fù)式格子的概念顯得重要,21四、結(jié)晶學(xué)晶胞與原胞間的相互轉(zhuǎn)化 簡立方 體立方 面心立方 立方晶系不喇菲原胞原胞的基矢為: a1=ia, a2=ja, a3=ka結(jié)晶學(xué)中,屬于立方晶系的不喇菲原胞有簡立方、體心立方和面心立方。1. 簡立方222. 體心立方23固體物理學(xué)的原胞基矢與結(jié)晶學(xué)原胞基矢的關(guān)系: a1=(-i+j+k)a2 a2=(k+i-j)a2 a3=(i+j-k)a2體積關(guān)系:結(jié)晶學(xué)原胞的體積
10、是物理學(xué)原胞的2倍。原因是結(jié)晶學(xué)原胞中含有兩個原子,而物理學(xué)原胞中含有一個原子。24R=l1a1+l2a2+l2a3R=2a1+a2+a3R物理=a2+a3R結(jié)晶=(1/2)a+ (1/2) a+a= (1/2)(a+a+2a)3. 面心立方a1a2a3254. 六角密堆固體物理學(xué)的原胞基矢與結(jié)晶學(xué)原胞基矢的關(guān)系: a1=(j+k)a2 a2=(k+i)a2 a3=(i+j)a2體積關(guān)系:結(jié)晶學(xué)原胞的體積是物理學(xué)原胞的4倍。原因是結(jié)晶學(xué)原胞中含有4個原子,而物理學(xué)原胞中含有一個原子。26晶體結(jié)構(gòu)的一些重要概念(一)原子半徑: 對于同種元素原子構(gòu)成的晶體,原子半徑r通常是指原胞中相近的兩個原子之
11、間距離的一半。它與晶格常數(shù)a之間有一定的關(guān)系。例如面心立方中: (二)配位數(shù):晶體中原子排列的緊密程度是區(qū)別不同晶體結(jié)構(gòu)的重要特征,通常用配位數(shù)來描述。配位數(shù)是指晶體中任一原子最近鄰的原子數(shù)目。該數(shù)目越大,則晶體中原子排列越緊密。(三)致密度:另一種描述晶體中原子排列的緊密程度的物理量,是晶體中原子所占總體積與晶體總體積之比。若晶胞中含有n個原子,每個原子的體積為v,晶胞總體積為V則:致密度:27(四)、晶列 1. 晶列通過任意兩個格點連一直線,則這一直線包含無限個相同格點,這樣的直線稱為晶列,也是晶體外表上所見的晶棱。其上的格點分布具有一定的周期-任意兩相鄰格點的間距。 281. 晶列的特點
12、 (1)一族平行晶列把所有點 包括無遺。 (2)在一平面中,同族的相鄰晶列之間的距離相等。 (3)通過一格點可以有無限 多個晶列,其中每一晶列都有一族平行的晶列與之對應(yīng)。 (4 )有無限多族平行晶列。29 - 。 。 。 。 。 。 。 。 。 晶面的特點:(1)通過任一格點,可以作全同的晶面與一晶面平行,構(gòu)成一族平行晶面.(2)所有的格點都在一族平行的晶面上而無遺漏;(3)一族晶面平行且等距,各晶面上格點分布情況相同;(4)晶格中有無限多族的平行晶面。(五)、晶面30(六)、晶向 一族晶列的特點是晶列的取向,該取向為晶向; 同樣一族晶面的特點也由取向決定,因此無論對于晶列或晶面,只需標(biāo)志其取
13、向。 注:為明確起見,下面仍只討論物理學(xué)的布喇菲格子。31任一格點 A的位矢Rl為 Rl =l1a1+l2a2+l3a3式中l(wèi)1、l2、l3是整數(shù)。若互質(zhì),直接用他們來表征晶列OA的方向(晶向),這三個互質(zhì)整數(shù)為晶列的指數(shù),記以 l1,l2,l3同樣,在結(jié)晶學(xué)上,原胞不是最小的重復(fù)單元,而原胞的體積是最小重復(fù)簡單整數(shù)倍,以任一格點o為原點,a、b、c為基矢,任何其他格點A的位矢為 k ma+knb+kpc其中m、n、p為三個互質(zhì)整數(shù),于是用m、n、p來表示晶列OA的方向,記以nmp。1 . 晶列指數(shù) (晶列方向的表示方法)ORlAa1a2a332表示晶面的方法,即方位: 在一個坐標(biāo)系中用該平面
14、的法線方向的余弦;或表示出這平面在座標(biāo)軸上的截距。a1a2a3設(shè)這一族晶面的面間距為d,它的法線方向的單位矢量為n,則這族晶面中,離開原點的距離等于d的晶面的方程式為: 為整數(shù);R是晶面上的任意點的位矢。R2. 密勒指數(shù)( 晶面方向的表示方法)R n=d33設(shè)此晶面與三個座標(biāo)軸的交點的位矢分別為ra1 、sa2、ta3,代入上式,則有 ra1cos(a1,n)=d sa2cos(a2,n)=d ta3cos(a3,n)=da1 、 a2、a3取單位長度,則得cos(a1,n): cos(a2,n) :cos(a3,n)=1r:1s:1t結(jié)論:晶面的法線方向n與三個坐標(biāo)軸(基矢)的夾角的余弦之比
15、等于晶面在三個軸上的截距的倒數(shù)之比。34 已知一族晶面必包含所有的格點 ,因此在三個基矢末端的格點必分別落在該族的不同的晶面上。設(shè)a1 、 a2、a3的末端上的格點分別在離原點的距離為h1d、h2d、h3d的晶面上,其中h1、h2、h3都是整數(shù),三個晶面分別有 a1n=h1d , a2n=h2d , a3n=h3dn是這一族晶面公共法線的單位矢量,于是 a1cos(a1,n)=h1d a2cos(a2,n)=h2d a3cos(a3,n)=h3d證明截距的倒數(shù)之比為整數(shù)之比35cos(a1,n): cos(a2,n) :cos(a3,n)=h1:h2:h3結(jié)論: 晶面族的法線與三個基矢的夾角的
16、余弦之比等于三個整數(shù)之比??梢宰C明 :h1、h2、h3三個數(shù)互質(zhì),稱它們?yōu)樵摼孀宓拿嬷笖?shù),記以( h1h2h3)。即把晶面在座標(biāo)軸上的截距的倒數(shù)的比簡約為互質(zhì)的整數(shù)比,所得的互質(zhì)整數(shù)就是面指數(shù)。幾何意義:在基矢的兩端各有一個晶面通過,且這兩個晶面為同族晶面,在二者之間存在hn個晶面,所以最靠近原點的晶面(=1)在坐標(biāo)軸上的截距為a1/h1、a2/h2、a3/h3,同族的其他晶面的截距為這組截距的整數(shù)倍。36實際工作中,常以結(jié)晶學(xué)原胞的基矢a、b、c為坐標(biāo)軸來表示面指數(shù)。在這樣的坐標(biāo)系中,標(biāo)征晶面取向的互質(zhì)整數(shù)稱為晶面族的密勒指數(shù),用(hkl)表示。例如:有一ABC面,截距為4a、b、c, 截
17、距的倒數(shù)為1/4、1、1,它的密勒指數(shù)為(1,4,4)。另有一晶面,截距為2a、4b、c, 截距的倒數(shù)為1/2、1/4、0,它的密勒指數(shù)為(2、1、0)。37簡單晶面指數(shù)的特點: 晶軸本身的晶列指數(shù)特別簡單,為100、010、001; 晶體中重要的帶軸的指數(shù)都是簡單的; 晶面指數(shù)簡單的晶面如(110)、(111)是重要的晶面; 晶面指數(shù)越簡單的晶面,面間距d就越大,格點的面密度大,易于解理; 格點的面密度大,表面能小,在晶體生長過程中易于顯露在外表;對X射線的散射強,在X射線衍射中,往往為照片中的濃黑斑點所對應(yīng)。38 晶體的基本特征是結(jié)構(gòu)具有周期性。用空間點陣概括周期性,空間點陣是由R =l1a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GH/T 1444-2023速凍薺菜加工技術(shù)規(guī)程
- 《電器銷售員培訓(xùn)》課件
- 《熱泵的基礎(chǔ)知識》課件
- 《小學(xué)人物描寫》課件
- 單位管理制度范例合集職員管理十篇
- 《網(wǎng)絡(luò)b安全b》課件
- 第3單元 中國特色社會主義道路(A卷·知識通關(guān)練)(解析版)
- 《美甲的發(fā)展史》課件
- 2014年高考語文試卷(新課標(biāo)Ⅱ卷)(解析卷)
- 中國非遺文化魚燈介紹2
- 萬用表的使用
- TDT1062-2021《社區(qū)生活圈規(guī)劃技術(shù)指南》
- GB/T 12959-2024水泥水化熱測定方法
- 《商務(wù)禮儀》試題及答案大全
- 《核電廠焊接材料評定與驗收標(biāo)準》
- MOOC 數(shù)字邏輯電路實驗-東南大學(xué) 中國大學(xué)慕課答案
- 小學(xué)生建筑科普小知識
- 安徽省六安市2024屆高三上學(xué)期期末教學(xué)質(zhì)量檢測數(shù)學(xué)試題(解析版)
- 2024年1月電大國家開放大學(xué)期末考試試題及答案:人類行為與社會環(huán)境
- 2024年貴安新區(qū)產(chǎn)業(yè)發(fā)展控股集團有限公司招聘筆試參考題庫含答案解析
- 欣旺達質(zhì)量體系+社會責(zé)任+安規(guī)體系審核(QSA)
評論
0/150
提交評論