




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、-. z. -. -可修編- .學校代碼: *學 號: *課程設(shè)計說明書題目: 平面度誤差的測量及數(shù)據(jù)處理學生:學院:班級:指導(dǎo)教師:摘要平面度誤差是將被測實際外表與理想平面進展比擬,兩者之間的線值距離即為平面度誤差值;或通過測量實際外表上假設(shè)干點的相對高度差,再換算以線值表示的平面度誤差值。本文就平面度誤差的數(shù)學模型與按最小二乘法建立理想平面評定基準的數(shù)學模型展開分析討論;并結(jié)合案列分析,得出比擬客觀地評定平面度誤差或者測量較大平面的平面度誤差,最小二乘法是最正確方法1關(guān)鍵詞:最小二乘法;平面度誤差;最正確方法AbstractFlatness error is measured by act
2、ual surface with an ideal plane are pared, the line between the two values of distance, which is the flatness error values, or by measuring the actual surface on several points of relative height difference, conversion to line value representation of flatness error value .This paper studies the math
3、enatical model of flatness error and ideal plane made by least square method .With illust ration of practical cases, the author reaches the conclusion that least sauare method is the best one in judging and measuring larger planes flatness error.Keywords: Leastaquare method ; Flatness error;Best met
4、hod目錄 TOC o 1-3 h z u HYPERLINK l _Toc440573341第一章平面度的測量方法 PAGEREF _Toc440573341 h 3HYPERLINK l _Toc4405733421.1引言 PAGEREF _Toc440573342 h 3HYPERLINK l _Toc4405733431.2平面度誤差的測量 PAGEREF _Toc440573343 h 3HYPERLINK l _Toc440573349第二章平面度的評定 PAGEREF _Toc440573349 h 3HYPERLINK l _Toc44057335021最小區(qū)域法 PAGER
5、EF _Toc440573350 h 3HYPERLINK l _Toc4405733562.2最小二乘法測量平面度誤差的原理 PAGEREF _Toc440573356 h 3HYPERLINK l _Toc4405733572.21建立被測實際外表的數(shù)學模型 PAGEREF _Toc440573357 h 3HYPERLINK l _Toc440573358第三章用MATLA實現(xiàn)的過程 PAGEREF _Toc440573358 h 3HYPERLINK l _Toc4405733593.1軟件編程 PAGEREF _Toc440573359 h 3HYPERLINK l _Toc4405
6、733603.2平面度誤差的最小二乘法評定及其評定結(jié)果的不確定度 PAGEREF _Toc440573360 h 3HYPERLINK l _Toc4405733613.3小結(jié) PAGEREF _Toc440573361 h 3-. z.第一章平面度的測量方法1.1 引言平面度誤差是指被測實際外表對其理想平面的變動量。理想平面是評定平面度誤差的評定基準,而評定基準的方位不同求得的平面度誤差值也不同。假設(shè)用水平儀、自準直儀按節(jié)距法測量實際外表上各點相對于測量基準的平面度誤差時,確定評定基準的方法可用:簡便法、最小二乘法、和最小包容區(qū)域法2。本文著重分析介紹最小二乘法來確定評定基準,從而求得平面度
7、誤差值。最小二乘法能準確而充分地利用全部的原始觀測數(shù)據(jù)提供的信息,比擬客觀地評定出不需要經(jīng)過屢次試算的平面度誤差,而且可直接運用于電子計算機運算,列入MATLAB軟件,是的平面度誤差的計算到達迅速、準確、可靠7。1.2 平面度誤差的測量平面度誤差的測量方法很多,常用的有如下所列的方法: = 1 * GB3 光隙法:將被測直線和測量基線間形成的光隙,與標準光隙比擬,測量不同方向的假設(shè)干個截面上的直線度誤差,取其中最大值,作為平面度誤差近似值的方法。該方法適用于磨削或研磨加工的小平面的平面度誤差測量。 = 2 * GB3 指示器法:將被測零件支撐在平板上,平板工作面為測量基準,按一定的方式布點,如
8、圖3所示,用指示器對被測面上各點進展測量并記錄所測數(shù)據(jù),然后,按一定的方法評定其誤差值。該方法適用于中、小平面的平面度誤差測量。 = 3 * GB3 光軸法:以幾何光軸建立測量基面,測出被測面相對測量基面的偏離量,進而評定平面度誤差值的方法,該方法適用于一般精度大平面的平面度誤差測量。 = 4 * GB3 干預(yù)法:利用光波干預(yù)原理,根據(jù)干預(yù)條紋形狀、條數(shù),來確定平面度誤差值的方法,該方法適用于精研外表的平面度誤差測量。 = 5 * GB3 三坐標測量機:三坐標測量機是綜合利用精細機械、微電子、光柵和激光干-. z.涉儀等先進技術(shù)的測量儀器,其原理是在三個相互垂直的方向上,有導(dǎo)向機構(gòu)、測長元件、
9、數(shù)顯裝置,有一個能夠放置工件的工作臺,測頭可以以手動或機動方式,輕快地移動到被測點上,由讀數(shù)設(shè)備和數(shù)顯裝置,把被測點的坐標值顯示出來的一種測量設(shè)備4。除上面介紹的幾種方法外,還有液面法、自準直儀法等,工貿(mào)職業(yè)中專學校實驗室在教學中,常采用光學合像水平儀測定平板的平面度誤差。第二章平面度的評定平面度誤差是被測實際外表相對理想平面的變動量。根據(jù)GBT1 1337-2004平面度誤差檢測對形狀誤差的定義,理想平面的位置應(yīng)符合最小條件,平面度誤差大小,等于包容實際外表且距離為兩平行平面之間的寬度。平面度誤差的評定方法有:最小包容區(qū)域法,對角線法,三遠點法和最小二乘法5。2.1 最小區(qū)域法它是兩平行包容
10、平面與實際被測要素的接觸狀態(tài)符合平面度誤差判別法中*一準則時,此時兩平行平面之問的距離,為平面度誤差。用最小條件評定平面度誤差有3種判斷準則:三角形準則,穿插準則,直線準則。平面度誤差的最小區(qū)域判別方法是:由兩個平行平面包容被測實際外表時,至少有3點或4點相接觸,接觸點的上下分布,有以下3種形式之一者,即符合最小區(qū)域。 = 1 * GB3 三角形準則:如果被測實際外表上有3個最高(低)點及一個最低(高)點分別與兩個包容平面相接觸,并且最高(低)點能投影到3個最低(高)點之間,形成最小包容,稱為三角形準則。 = 2 * GB3 穿插準則:兩個高點與兩個低點*些實際外表具有鞍形的形狀特征,其與上下
11、包容面各有兩個接觸點,假設(shè)兩高點的投影位于兩低點連線之兩側(cè),形成最小包容,稱為穿插準則。 = 3 * GB3 直線準則:如果被測外表上的同一截面有兩個最高(低)點與一個低(高)點分別和兩個平行的包容面相接觸,并且有一個最低(高)點的投影要落在兩高(或兩低)點連線之上,此時也形成最小包容,稱為直線準則。 = 4 * GB3 對角線法:評定基準平面是通過實際平面的一條對角線和平行于另一條對角線的平面,各測點對此平面的偏差中最大正值與最大負值的絕對值之和為被測實際平面的平面度誤差值。 = 5 * GB3 三點法:評定基準平面是通過被測實際平面上相距較遠且不在一條直線上的三點建立的平面。偏離此平面的最
12、大值和最小值的絕對值之和為平面度誤差這三種方法雖然都是針對同一被測平面,但由于評定基準平面選取不同,得到的誤差值也不同6。2.2 最小二乘法測量平面度誤差的原理最小二乘平面是個理想的平面,它使從實際被測輪廓上各點到該平面的距離的平方和為最小。因此,最小二乘法的目標函數(shù),即各測點到最小二乘基準平面的距離的平方和FA,B,C=2-1其滿足最小化時,F(xiàn)A,B,C的A,B,C即最小二乘基準平面的法向量, (2-2)即為最小二乘法平面度誤差值3。2.2.1 建立被測實際外表的數(shù)學模型平面度誤差是指被測實際外表不平的程度,而平面在空間直角坐標系中,它的一般方程為;A*+BY+CZ+D=0; 假設(shè)測得的點的
13、坐標是=1,2,,其中A,B,C為待定參數(shù)。根據(jù)最小二乘法原理得到最小二乘平面的待定系數(shù)A,B,C為A=2-3 B=2-4) C=(2-5)由于現(xiàn)在知道A,B,C 的系數(shù),即確定了最小二乘平面。接下來就是就能知道改平面的上方的點和下方的點到該平面的距離,由于在該平面上下方都有點,所以點的本身就帶有矢量性。點到平面的距離公式為2-6根據(jù)最小二乘法的原理有:2-7由于觀測到的數(shù)據(jù)位于最小二乘平面基準平面的上下兩側(cè),所以有點到平面的距離有最大值和最小值的兩個點!即平面度為2-8第三章用MATLA實現(xiàn)的過程3.1 軟件編程本文是通過MATLAB軟件求得最小二乘平面基準平面的系數(shù)A,B,C,將最小二乘平
14、面基準平面擬合在三維坐標中和求出基準平面的平面度誤差。根據(jù)觀測到的數(shù)據(jù)如下:*mmymmzmm110.132 43.982 -0.003 219.641 44.092 -0.001 330.444 44.217 -0.002 430.618 29.359 -0.002 517.741 29.210 -0.001 65.450 29.068 -0.007 74.912 46.453 -0.012 815.887 46.580 -0.004 929.745 46.740 -0.002 1030.104 15.746 0.003 1118.721 15.614 -0.004 125.738 15.4
15、64 -0.010 1317.630 47.032 -0.010 1429.966 47.174 -0.007 155.989 44.945 -0.011 1616.808 45.071 -0.005 1728.761 45.209 -0.002 1828.901 33.125 0.000 1917.108 32.988 -0.007 203.975 32.836 -0.008 214.188 14.508 -0.008 2217.690 14.664 0.003 2330.909 14.817 0.004 2430.140 32.118 -0.003 2518.378 31.981 -0.0
16、07 264.371 31.820 -0.004 2718.421 31.982 -0.008 2830.889 32.127 -0.004 2931.111 13.176 0.001 3017.422 13.018 -0.005 現(xiàn)在將MATLAB代碼輸入軟件中:function testlsqnonlin111clc;注解:將數(shù)據(jù)放入到e*cel表格中如以下圖所示clear all;close all;% 讀入數(shù)據(jù)data = *lsread(數(shù)據(jù).*ls);% 3列對應(yīng)*,y,z*data = data(:,2);ydata = data(:,3);注解:將保存好的數(shù)據(jù)文件與MATLAB
17、的代碼文件放到同一個文件夾下。然后就可以啟動MATLAB軟件翻開代碼文件運行一下,就可以出來結(jié)果圖啦。祝你好運!zdata = data(:,4);% 畫出原始數(shù)據(jù)點,紅色figure;plot3(*data,ydata,zdata,r*);hold on;% 初始值 a b c 都為0*0 = 0 0 0;% 調(diào)用最小二乘法非線性擬合函數(shù)* =lsqnonlin(*) myfun(*,*data,ydata,zdata),*0)% 求平面度誤差% 平面方程的系數(shù)a = *(1);b = *(2);c = *(3);% 根據(jù)公式求 didi = (zdata - a*data - b*ydat
18、a - c)/sqrt(a2+b2+1);dma* = ma*(di);dmin = min(di);f = dma* - dmin % 就是要求的平面度誤差% 畫擬合的平面* = linspace(min(*data),ma*(*data),200);yy = linspace(min(ydata),ma*(ydata),200);*,Y = meshgrid(*,yy);Z = a*+b*Y+c;surf(*,Y,Z);colormap;holdon;grid on;% 按照這個函數(shù)去擬合,使得式(2)成立function F = myfun(*,*data,ydata,zdata) F
19、= (zdata - *(1)*data - *(2)*ydata - *(3)/sqrt(1 + *(1)2+*(2)2);得到結(jié)果為:圖1 最小二乘平面系數(shù)與平面度誤差圖2 MATLAB最小二乘法平面方程三維圖3.2 平面度誤差的最小二乘法評定及其評定結(jié)果的不確定度測量不確定度是指測量結(jié)果變化的不肯定,是表征被測量的真值在*個量值圍的一個估計,是測量結(jié)果含有的一個參數(shù),用以表示被測量值的分散性。這種測量不確定度的定義說明,一個完整的測量結(jié)果應(yīng)該包含被測量值的估計與分散性參數(shù)兩局部9。根據(jù)測量不確定度定義,在測量實踐中如何對測量不確定度進展合理的評定,這是必須解決的根本問題。對于一個實際測量
20、過程,影響測量結(jié)果的精度有多方面的因素,因此測量不確定一般包含假設(shè)干個分量,各確定度分量不管性質(zhì)如何,皆可用兩類方法進展評定,即A類評定與B類評定。其中一些分量由一系列觀測數(shù)據(jù)的統(tǒng)計分析來評定,稱為A類評定;另一些分量不是用一系列觀測數(shù)據(jù)的統(tǒng)計分析法,而是基于經(jīng)歷或其他信息所認定的概率分布來評定,稱為B類評定。所有的不確定度分量均用標準差表征,它們或是由隨機誤差而引起的,或是由系統(tǒng)誤差而引起的,都對測量結(jié)果的分散性產(chǎn)生相應(yīng)的影響10。現(xiàn)在將平面方程的系數(shù)A,B,C的表達式分別展開令V=3-1P= QUOTE ,q=, QUOTE , QUOTE 整理后得到 QUOTE 3-2 QUOTE QU
21、OTE QUOTE 設(shè)按最小二乘法評定公式得到最大偏離值點和最小偏離值的坐標分別為,帶入公式得到 QUOTE 令 QUOTE , QUOTE , 再令 QUOTE QUOTE QUOTE 得到 QUOTE 展開 QUOTE 轉(zhuǎn)化為矩陣形式,令 QUOTE QUOTE 得到 QUOTE 因被測點的*,Y坐標值在平面度的非敏感方向上,其不確定度可以忽略,因此上式為坐標值Z的線性函數(shù),假設(shè)被測點的測量結(jié)果間互相獨立,且具有一樣的標準差,即有一樣的不確定度則可以用不確定度的公式,得到用最小二乘法評定的平面度的不確定度為假設(shè)各點被測點直接測量結(jié)果間有關(guān),且各自確實定度不同,則要計入?yún)f(xié)方差的影響,為將表達
22、式簡化起見,將矩陣增廣,即當時,令,當時,這時候最小二乘法評定的平面度誤差的不確定度為 QUOTE 由于測量了30組數(shù)據(jù),所以n=30。由e*cel表格就可求出,所以P=571.190、q=965.116 u=13762.216 w=35543.224 t=18360.108 v=3.86*。由于最小二乘平面的方程系數(shù)已經(jīng)算出來,即A=0.0003,B=-0.0001,C=-0.0058,在利用點到e*cel計算出最小二乘平面的距離3-3所以能夠得到偏離最小二乘平面的最大值和最小值所對應(yīng)的坐標17.690,14.664,0.003此為最大值,29.966,47.174,-0.007為最小值,將數(shù)據(jù)帶入到公式中得到的結(jié)果不確定度為 QUOTE 。3.3 小結(jié):最小二乘法評定平面度誤差從數(shù)理統(tǒng)計分析觀點來看,能夠準確地和充分地處理原始觀測數(shù)據(jù)所提供的信息,比擬客觀地評定平面度誤差,有利于采用電子計算機進展運算,尤其適用于測量較大平面的平面度誤差,測量較大平面時,因其布點較多,假
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京2025年北京市平谷區(qū)人力資源和社會保障局第一次事業(yè)單位招聘57人筆試歷年參考題庫附帶答案詳解
- 二零二五版最簡易公司個人勞動合同范例
- 學校辦公用品采購合同二零二五年
- 二零二五事業(yè)單位臨時聘用人員合同
- 離婚財產(chǎn)處理協(xié)議書樣本一覽二零二五年
- 二零二五版?zhèn)鶆?wù)協(xié)議書范文
- 廣告牌場地租賃合同范例二零二五年
- 大學清明緬懷先烈
- 2025剖析技術(shù)轉(zhuǎn)讓合同
- 2025上海市寫字樓租賃合同范本(合同版本)
- 中國急性缺血性卒中診治指南(2023)解讀
- 2024屆江蘇省南京市臨江高級中學高三下學期三模物理試題
- 延遲焦化裝置吸收穩(wěn)定系統(tǒng)工藝與操作資料課件
- 山東省汽車維修工時定額(T-SDAMTIA 0001-2023)
- 《焊接工藝與技能訓練》課程標準
- 《銅產(chǎn)業(yè)鏈》課件
- 臨床療效總評量表(CGI)
- 寺廟開發(fā)運營項目融資計劃書
- 2023年上海市楊浦區(qū)社區(qū)工作者招聘考試真題
- 《鳳仙花開花了》參考課件
- 風濕免疫科類風濕關(guān)節(jié)炎一病一品優(yōu)質(zhì)護理匯報課件
評論
0/150
提交評論