版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2022學(xué)年高考數(shù)學(xué)模擬測(cè)試卷考生請(qǐng)注意:1答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1陀螺是中國(guó)民間最早的娛樂(lè)工具,也稱陀羅. 如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗線畫(huà)出的是某個(gè)陀螺的三視圖,則該陀螺的表面積為( )ABCD2已知等差數(shù)列的公差為,前項(xiàng)和為,為某三角形的三邊長(zhǎng)
2、,且該三角形有一個(gè)內(nèi)角為,若對(duì)任意的恒成立,則實(shí)數(shù)( ).A6B5C4D33如果,那么下列不等式成立的是( )ABCD4做拋擲一枚骰子的試驗(yàn),當(dāng)出現(xiàn)1點(diǎn)或2點(diǎn)時(shí),就說(shuō)這次試驗(yàn)成功,假設(shè)骰子是質(zhì)地均勻的.則在3次這樣的試驗(yàn)中成功次數(shù)X的期望為( )A13B12C1D25已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為( )ABCD6中國(guó)古代數(shù)學(xué)著作孫子算經(jīng)中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問(wèn)物幾何?”人們把此類題目稱為“中國(guó)剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如現(xiàn)將該問(wèn)題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于( )ABC
3、D7已知函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,則( )ABCD8年某省將實(shí)行“”的新高考模式,即語(yǔ)文、數(shù)學(xué)、英語(yǔ)三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒(méi)有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為ABCD9設(shè)函數(shù)若關(guān)于的方程有四個(gè)實(shí)數(shù)解,其中,則的取值范圍是( )ABCD10已知隨機(jī)變量滿足,.若,則( )A,B,C,D,11直線l過(guò)拋物線的焦點(diǎn)且與拋物線交于A,B兩點(diǎn),則的最小值是A10B9C8D712已知集合,則全集則下列結(jié)論正確的是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13若直線與直線交于點(diǎn),則長(zhǎng)度的最大值為_(kāi)1
4、4已知,且,若恒成立,則實(shí)數(shù)的取值范圍是_15設(shè)滿足約束條件,則目標(biāo)函數(shù)的最小值為_(kāi).16已知正實(shí)數(shù)滿足,則的最小值為 三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知數(shù)列的前項(xiàng)和為,.(1)求數(shù)列的通項(xiàng)公式;(2)若,為數(shù)列的前項(xiàng)和.求證:.18(12分)在中,角所對(duì)的邊分別是,且.(1)求;(2)若,求.19(12分)如圖,在正四棱錐中,為上的四等分點(diǎn),即(1)證明:平面平面;(2)求平面與平面所成銳二面角的余弦值20(12分)選修44:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為(為參數(shù))以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立
5、極坐標(biāo)系,直線l的極坐標(biāo)方程為,點(diǎn)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值21(12分)為了拓展城市的旅游業(yè),實(shí)現(xiàn)不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達(dá)公路,中間設(shè)有至少8個(gè)的偶數(shù)個(gè)十字路口,記為,現(xiàn)規(guī)劃在每個(gè)路口處種植一顆楊樹(shù)或者木棉樹(shù),且種植每種樹(shù)木的概率均為.(1)現(xiàn)征求兩市居民的種植意見(jiàn),看看哪一種植物更受歡迎,得到的數(shù)據(jù)如下所示:A市居民B市居民喜歡楊樹(shù)300200喜歡木棉樹(shù)250250是否有的把握認(rèn)為喜歡樹(shù)木的種類與居民所在的城市具有相關(guān)性;(2)若從所有的路口中隨機(jī)抽取4個(gè)路口,恰有個(gè)路口種植楊樹(shù),求的分布列以及數(shù)學(xué)期望;(3)在所有的路口種植完成后,選取3個(gè)
6、種植同一種樹(shù)的路口,記總的選取方法數(shù)為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.82822(10分)已知函數(shù)的定義域?yàn)?(1)求實(shí)數(shù)的取值范圍;(2)設(shè)實(shí)數(shù)為的最小值,若實(shí)數(shù),滿足,求的最小值.2022學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【答案解析】畫(huà)出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可,【題目詳解】由題意可知幾何體的直觀圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選
7、:C【答案點(diǎn)睛】本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關(guān)鍵.2、C【答案解析】若對(duì)任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時(shí)的n即可.【題目詳解】由已知,又三角形有一個(gè)內(nèi)角為,所以,解得或(舍),故,當(dāng)時(shí),取得最大值,所以.故選:C.【答案點(diǎn)睛】本題考查等差數(shù)列前n項(xiàng)和的最值問(wèn)題,考查學(xué)生的計(jì)算能力,是一道基礎(chǔ)題.3、D【答案解析】利用函數(shù)的單調(diào)性、不等式的基本性質(zhì)即可得出.【題目詳解】,.故選:D.【答案點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性比較大小,考查不等式的性質(zhì),屬于基礎(chǔ)題.4、C【答案解析】每一次成功的概率為p=26=13,X服從二項(xiàng)分布,計(jì)算得到
8、答案.【題目詳解】每一次成功的概率為p=26=13,X服從二項(xiàng)分布,故EX=133=1.故選:C.【答案點(diǎn)睛】本題考查了二項(xiàng)分布求數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.5、D【答案解析】先根據(jù)已知條件求解出的通項(xiàng)公式,然后根據(jù)的單調(diào)性以及得到滿足的不等關(guān)系,由此求解出的取值范圍.【題目詳解】由已知得,則.因?yàn)椋瑪?shù)列是單調(diào)遞增數(shù)列,所以,則,化簡(jiǎn)得,所以.故選:D.【答案點(diǎn)睛】本題考查數(shù)列通項(xiàng)公式求解以及根據(jù)數(shù)列單調(diào)性求解參數(shù)范圍,難度一般.已知數(shù)列單調(diào)性,可根據(jù)之間的大小關(guān)系分析問(wèn)題.6、C【答案解析】從21開(kāi)始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.7、C【答案解
9、析】根據(jù)題意,由函數(shù)的奇偶性可得,又由,結(jié)合函數(shù)的單調(diào)性分析可得答案【題目詳解】根據(jù)題意,函數(shù)是定義在上的偶函數(shù),則,有,又由在上單調(diào)遞增,則有,故選C.【答案點(diǎn)睛】本題主要考查函數(shù)的奇偶性與單調(diào)性的綜合應(yīng)用,注意函數(shù)奇偶性的應(yīng)用,屬于基礎(chǔ)題8、B【答案解析】甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時(shí)選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計(jì)算公式,可得甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率,故選B9、B【答案解析】畫(huà)出函數(shù)圖像,根據(jù)圖像知:,計(jì)算得到答案.【題目詳解】,畫(huà)出函數(shù)圖像,如圖所示:根據(jù)圖像知:,故,且.故.故選:.【答案點(diǎn)睛】本題考查了
10、函數(shù)零點(diǎn)問(wèn)題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力,畫(huà)出圖像是解題的關(guān)鍵.10、B【答案解析】根據(jù)二項(xiàng)分布的性質(zhì)可得:,再根據(jù)和二次函數(shù)的性質(zhì)求解.【題目詳解】因?yàn)殡S機(jī)變量滿足,.所以服從二項(xiàng)分布,由二項(xiàng)分布的性質(zhì)可得:,因?yàn)?,所以,由二次函?shù)的性質(zhì)可得:,在上單調(diào)遞減,所以.故選:B【答案點(diǎn)睛】本題主要考查二項(xiàng)分布的性質(zhì)及二次函數(shù)的性質(zhì)的應(yīng)用,還考查了理解辨析的能力,屬于中檔題.11、B【答案解析】根據(jù)拋物線中過(guò)焦點(diǎn)的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值【題目詳解】由拋物線標(biāo)準(zhǔn)方程可知p=2因?yàn)橹本€l過(guò)拋物線的焦點(diǎn),由過(guò)拋物線焦點(diǎn)的弦的性質(zhì)可知 所以 因?yàn)?為線段長(zhǎng)度,都大于0,由基
11、本不等式可知,此時(shí)所以選B【答案點(diǎn)睛】本題考查了拋物線的基本性質(zhì)及其簡(jiǎn)單應(yīng)用,基本不等式的用法,屬于中檔題12、D【答案解析】化簡(jiǎn)集合,根據(jù)對(duì)數(shù)函數(shù)的性質(zhì),化簡(jiǎn)集合,按照集合交集、并集、補(bǔ)集定義,逐項(xiàng)判斷,即可求出結(jié)論.【題目詳解】由,則,故,由知,因此,故選:D【答案點(diǎn)睛】本題考查集合運(yùn)算以及集合間的關(guān)系,求解不等式是解題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】根據(jù)題意可知,直線與直線分別過(guò)定點(diǎn),且這兩條直線互相垂直,由此可知,其交點(diǎn)在以為直徑的圓上,結(jié)合圖形求出線段的最大值即可.【題目詳解】由題可知,直線可化為,所以其過(guò)定點(diǎn),直線可化為,所以其
12、過(guò)定點(diǎn),且滿足,所以直線與直線互相垂直,其交點(diǎn)在以為直徑的圓上,作圖如下:結(jié)合圖形可知,線段的最大值為,因?yàn)闉榫€段的中點(diǎn),所以由中點(diǎn)坐標(biāo)公式可得,所以線段的最大值為.故答案為:【答案點(diǎn)睛】本題考查過(guò)交點(diǎn)的直線系方程、動(dòng)點(diǎn)的軌跡問(wèn)題及點(diǎn)與圓的位置關(guān)系;考查數(shù)形結(jié)合思想和運(yùn)算求解能力;根據(jù)圓的定義得到交點(diǎn)在以為直徑的圓上是求解本題的關(guān)鍵;屬于中檔題.14、(-4,2)【答案解析】試題分析:因?yàn)楫?dāng)且僅當(dāng)時(shí)取等號(hào),所以考點(diǎn):基本不等式求最值15、【答案解析】根據(jù)滿足約束條件,畫(huà)出可行域,將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時(shí)的點(diǎn),此時(shí),目標(biāo)函數(shù) 取得最小值.【題目詳解】由滿足約束條件,
13、畫(huà)出可行域如圖所示陰影部分:將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時(shí)的點(diǎn) 此時(shí),目標(biāo)函數(shù) 取得最小值,最小值為故答案為:-1【答案點(diǎn)睛】本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結(jié)合的思想方法,屬于基礎(chǔ)題.16、4【答案解析】由題意結(jié)合代數(shù)式的特點(diǎn)和均值不等式的結(jié)論整理計(jì)算即可求得最終結(jié)果.【題目詳解】.當(dāng)且僅當(dāng)時(shí)等號(hào)成立.據(jù)此可知:的最小值為4.【答案點(diǎn)睛】條件最值的求解通常有兩種方法:一是消元法,即根據(jù)條件建立兩個(gè)量之間的函數(shù)關(guān)系,然后代入代數(shù)式轉(zhuǎn)化為函數(shù)的最值求解;二是將條件靈活變形,利用常數(shù)代換的方法構(gòu)造和或積為常數(shù)的式子,然后利用基本不等式求解最值三、解答題:共70分。解
14、答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析【答案解析】(1)利用求得數(shù)列的通項(xiàng)公式.(2)先將縮小即,由此結(jié)合裂項(xiàng)求和法、放縮法,證得不等式成立.【題目詳解】(1),令,得.又,兩式相減,得.(2).又,.【答案點(diǎn)睛】本小題主要考查已知求,考查利用放縮法證明不等式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.18、(1)(2)【答案解析】(1)根據(jù)正弦定理到,得到答案.(2)計(jì)算,再利用余弦定理計(jì)算得到答案.【題目詳解】(1)由,可得,因?yàn)?,所以,所?(2),又因?yàn)?,所?因?yàn)?,所以,?【答案點(diǎn)睛】本題考查了正弦定理和余弦定理,意在考查學(xué)生的計(jì)算能力.19、(1)答案
15、見(jiàn)解析(2)【答案解析】(1)根據(jù)題意可得,在中,利用余弦定理可得,然后同理可得,利用面面垂直的判定定理即可求解.(2)以為原點(diǎn)建立直角坐標(biāo)系,求出面的法向量為,的法向量為,利用空間向量的數(shù)量積即可求解.【題目詳解】(1)由由因?yàn)槭钦睦忮F,故于是,由余弦定理,在中,設(shè)再用余弦定理,在中,是直角,同理,而在平面上,平面平面(2)以為原點(diǎn)建立直角坐標(biāo)系,如圖:則設(shè)面的法向量為,的法向量為則,取于是,二面角的余弦值為:【答案點(diǎn)睛】本題考查了面面垂直的判定定理、空間向量法求二面角,屬于基礎(chǔ)題.20、(1),(2)【答案解析】試題分析:利用將極坐標(biāo)方程化為直角坐標(biāo)方程:化簡(jiǎn)為cossin1,即為xy1
16、再利用點(diǎn)到直線距離公式得:設(shè)點(diǎn)P的坐標(biāo)為(2cos,sin),得P到直線l的距離試題解析:解:化簡(jiǎn)為cossin1,則直線l的直角坐標(biāo)方程為xy1設(shè)點(diǎn)P的坐標(biāo)為(2cos,sin),得P到直線l的距離,dmax 考點(diǎn):極坐標(biāo)方程化為直角坐標(biāo)方程,點(diǎn)到直線距離公式21、(1)沒(méi)有(2)分布列見(jiàn)解析,(3)證明見(jiàn)解析【答案解析】(1)根據(jù)公式計(jì)算卡方值,再對(duì)應(yīng)卡值表判斷.(2)根據(jù)題意,隨機(jī)變量的可能取值為0,1,2,3,4,分別求得概率,寫(xiě)出分布列,根據(jù)期望公式求值.(3)因?yàn)橹辽?個(gè)的偶數(shù)個(gè)十字路口,所以,即.要證,即證,根據(jù)組合數(shù)公式,即證;易知有.成立.設(shè)個(gè)路口中有個(gè)路口種植楊樹(shù),下面分類討論當(dāng)時(shí),由論證.當(dāng)時(shí),由論證.當(dāng)時(shí),設(shè),再論證當(dāng) 時(shí),取得最小值即可.【題目詳解】(1)本次實(shí)驗(yàn)中,故沒(méi)有99.9%的把握認(rèn)為喜歡樹(shù)木的種類與居民所在的城市具有相關(guān)性.(2)依題意,的可能取值為0,1,2,3,4,故,01234故.(3),.要證,即證;首先證明:對(duì)任意,有.證明:因?yàn)?,所?設(shè)個(gè)路口中有個(gè)路口種植楊樹(shù),當(dāng)時(shí),因?yàn)?,所以,于?當(dāng)時(shí),同上可得當(dāng)時(shí),設(shè),當(dāng)時(shí),顯然,當(dāng)即時(shí),當(dāng)即時(shí),即;,因此,即.綜上,即.【答案點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn)、離散型隨機(jī)變量的分布列以及期望、排列組合,還考查運(yùn)算求解能力以
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨沂職業(yè)學(xué)院《篆刻2》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西應(yīng)用工程職業(yè)學(xué)院《建筑設(shè)備自動(dòng)化系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖北開(kāi)放職業(yè)學(xué)院《城市設(shè)計(jì)B》2023-2024學(xué)年第一學(xué)期期末試卷
- 遵義職業(yè)技術(shù)學(xué)院《中國(guó)古代文學(xué)5》2023-2024學(xué)年第一學(xué)期期末試卷
- 株洲師范高等??茖W(xué)?!斗沁z影像策劃與制作》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶青年職業(yè)技術(shù)學(xué)院《數(shù)據(jù)結(jié)構(gòu)及算法》2023-2024學(xué)年第一學(xué)期期末試卷
- 株洲師范高等??茖W(xué)?!吨攸c(diǎn)傳染病防治知識(shí)規(guī)培》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江外國(guó)語(yǔ)學(xué)院《課程與教學(xué)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江工貿(mào)職業(yè)技術(shù)學(xué)院《建筑美術(shù)Ⅲ》2023-2024學(xué)年第一學(xué)期期末試卷
- 中南林業(yè)科技大學(xué)《物理化學(xué)(1)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年安全教育培訓(xùn)試題附完整答案(奪冠系列)
- 化學(xué)-山東省濰坊市、臨沂市2024-2025學(xué)年度2025屆高三上學(xué)期期末質(zhì)量檢測(cè)試題和答案
- 領(lǐng)導(dǎo)學(xué) 課件全套 孫健 第1-9章 領(lǐng)導(dǎo)要素- 領(lǐng)導(dǎo)力開(kāi)發(fā)
- 2025新譯林版英語(yǔ)七年級(jí)下單詞默寫(xiě)表
- 2024年私募基金爭(zhēng)議解決研究報(bào)告之一:私募基金管理人謹(jǐn)慎勤勉義務(wù)之邊界探析-國(guó)楓研究院
- 物業(yè)客服服務(wù)技巧培訓(xùn)
- 環(huán)衛(wèi)設(shè)施設(shè)備更新實(shí)施方案
- 招聘技巧的培訓(xùn)
- 北師大版一年級(jí)上冊(cè)數(shù)學(xué)全冊(cè)教案(教學(xué)設(shè)計(jì))及教學(xué)反思
- 節(jié)假日臨時(shí)活動(dòng)保安服務(wù)方案
- 提高病案質(zhì)量完善病案管理病案部年終工作總結(jié)
評(píng)論
0/150
提交評(píng)論