2022學(xué)年安徽高三一診考試數(shù)學(xué)試卷(含解析)_第1頁(yè)
2022學(xué)年安徽高三一診考試數(shù)學(xué)試卷(含解析)_第2頁(yè)
2022學(xué)年安徽高三一診考試數(shù)學(xué)試卷(含解析)_第3頁(yè)
2022學(xué)年安徽高三一診考試數(shù)學(xué)試卷(含解析)_第4頁(yè)
2022學(xué)年安徽高三一診考試數(shù)學(xué)試卷(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2022學(xué)年高考數(shù)學(xué)模擬測(cè)試卷注意事項(xiàng):1 答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知數(shù)列的前項(xiàng)和為,且,則的通項(xiàng)公式( )ABCD2已知函,則的最小值為( )AB1C0D3已知,

2、則( )ABCD24復(fù)數(shù)的模為( )AB1C2D5如圖,圓是邊長(zhǎng)為的等邊三角形的內(nèi)切圓,其與邊相切于點(diǎn),點(diǎn)為圓上任意一點(diǎn),則的最大值為( )ABC2D6已知雙曲線的左、右焦點(diǎn)分別為,點(diǎn)P是C的右支上一點(diǎn),連接與y軸交于點(diǎn)M,若(O為坐標(biāo)原點(diǎn)),則雙曲線C的漸近線方程為( )ABCD7已知等差數(shù)列的前項(xiàng)和為,且,則( )A45B42C25D368已知,且,則在方向上的投影為( )ABCD9將函數(shù)圖象向右平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象關(guān)于直線對(duì)稱,則函數(shù)在上的值域是( )ABCD10已知,是兩條不重合的直線,是兩個(gè)不重合的平面,則下列命題中錯(cuò)誤的是( )A若,則或B若,則C若,則D若,則11在三

3、棱錐中,P在底面ABC內(nèi)的射影D位于直線AC上,且,.設(shè)三棱錐的每個(gè)頂點(diǎn)都在球Q的球面上,則球Q的半徑為( )ABCD12數(shù)列滿足:,則數(shù)列前項(xiàng)的和為ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知均為非負(fù)實(shí)數(shù),且,則的取值范圍為_(kāi)14已知數(shù)列的各項(xiàng)均為正數(shù),記為數(shù)列的前項(xiàng)和,若,則_.15過(guò)且斜率為的直線交拋物線于兩點(diǎn),為的焦點(diǎn)若的面積等于的面積的2倍,則的值為_(kāi).16齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機(jī)選一匹進(jìn)行一場(chǎng)比賽,則田忌的馬獲勝的概率為_(kāi)三、

4、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知數(shù)列的前項(xiàng)和為,且滿足().(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)(),數(shù)列的前項(xiàng)和.若對(duì)恒成立,求實(shí)數(shù),的值.18(12分)已知函數(shù)()(1)函數(shù)在點(diǎn)處的切線方程為,求函數(shù)的極值;(2)當(dāng)時(shí),對(duì)于任意,當(dāng)時(shí),不等式恒成立,求出實(shí)數(shù)的取值范圍.19(12分)設(shè)函數(shù)()的最小值為.(1)求的值;(2)若,為正實(shí)數(shù),且,證明:.20(12分)每年的寒冷天氣都會(huì)帶熱“御寒經(jīng)濟(jì)”,以交通業(yè)為例,當(dāng)天氣太冷時(shí),不少人都會(huì)選擇利用手機(jī)上的打車軟件在網(wǎng)上預(yù)約出租車出行,出租車公司的訂單數(shù)就會(huì)增加.下表是某出租車公司從出租車的訂單數(shù)據(jù)中抽取

5、的5天的日平均氣溫(單位:)與網(wǎng)上預(yù)約出租車訂單數(shù)(單位:份);日平均氣溫()642網(wǎng)上預(yù)約訂單數(shù)100135150185210(1)經(jīng)數(shù)據(jù)分析,一天內(nèi)平均氣溫與該出租車公司網(wǎng)約訂單數(shù)(份)成線性相關(guān)關(guān)系,試建立關(guān)于的回歸方程,并預(yù)測(cè)日平均氣溫為時(shí),該出租車公司的網(wǎng)約訂單數(shù);(2)天氣預(yù)報(bào)未來(lái)5天有3天日平均氣溫不高于,若把這5天的預(yù)測(cè)數(shù)據(jù)當(dāng)成真實(shí)的數(shù)據(jù),根據(jù)表格數(shù)據(jù),則從這5天中任意選取2天,求恰有1天網(wǎng)約訂單數(shù)不低于210份的概率.附:回歸直線的斜率和截距的最小二乘法估計(jì)分別為:21(12分)已知等比數(shù)列是遞增數(shù)列,且(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和22(10分)設(shè)首項(xiàng)為1

6、的正項(xiàng)數(shù)列an的前n項(xiàng)和為Sn,數(shù)列的前n項(xiàng)和為Tn,且,其中p為常數(shù)(1)求p的值;(2)求證:數(shù)列an為等比數(shù)列;(3)證明:“數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)”的充要條件是“x1,且y2”2022學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【答案解析】利用證得數(shù)列為常數(shù)列,并由此求得的通項(xiàng)公式.【題目詳解】由,得,可得().相減得,則(),又由,得,所以,所以為常數(shù)列,所以,故.故選:C【答案點(diǎn)睛】本小題考查數(shù)列的通項(xiàng)與前項(xiàng)和的關(guān)系等基礎(chǔ)知識(shí);考查運(yùn)算求解

7、能力,邏輯推理能力,應(yīng)用意識(shí).2、B【答案解析】,利用整體換元法求最小值.【題目詳解】由已知,又,故當(dāng),即時(shí),.故選:B.【答案點(diǎn)睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應(yīng)用,是一道中檔題.3、B【答案解析】結(jié)合求得的值,由此化簡(jiǎn)所求表達(dá)式,求得表達(dá)式的值.【題目詳解】由,以及,解得.故選:B【答案點(diǎn)睛】本小題主要考查利用同角三角函數(shù)的基本關(guān)系式化簡(jiǎn)求值,考查二倍角公式,屬于中檔題.4、D【答案解析】利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式求解【題目詳解】解:,復(fù)數(shù)的模為故選:D【答案點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法,屬于基礎(chǔ)題5、C【

8、答案解析】建立坐標(biāo)系,寫出相應(yīng)的點(diǎn)坐標(biāo),得到的表達(dá)式,進(jìn)而得到最大值.【題目詳解】以D點(diǎn)為原點(diǎn),BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為 可得到點(diǎn)的坐標(biāo)為: 故得到 故得到 , 故最大值為:2.故答案為C.【答案點(diǎn)睛】這個(gè)題目考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問(wèn)題.通過(guò)向量的運(yùn)算,將問(wèn)題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問(wèn)題的一般方法.6、C【答案解析】利用三角形與相似得,結(jié)合雙曲線的定義求得

9、的關(guān)系,從而求得雙曲線的漸近線方程?!绢}目詳解】設(shè),由,與相似,所以,即,又因?yàn)?,所以,所以,即,所以雙曲線C的漸近線方程為.故選:C.【答案點(diǎn)睛】本題考查雙曲線幾何性質(zhì)、漸近線方程求解,考查數(shù)形結(jié)合思想,考查邏輯推理能力和運(yùn)算求解能力。7、D【答案解析】由等差數(shù)列的性質(zhì)可知,進(jìn)而代入等差數(shù)列的前項(xiàng)和的公式即可.【題目詳解】由題,.故選:D【答案點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),考查等差數(shù)列的前項(xiàng)和.8、C【答案解析】由向量垂直的向量表示求出,再由投影的定義計(jì)算【題目詳解】由可得,因?yàn)?,所以故在方向上的投影為故選:C【答案點(diǎn)睛】本題考查向量的數(shù)量積與投影掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵9、D【

10、答案解析】由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對(duì)稱性,余弦函數(shù)的值域,求得結(jié)果.【題目詳解】解:把函數(shù)圖象向右平移個(gè)單位長(zhǎng)度后,可得的圖象;再根據(jù)得到函數(shù)的圖象關(guān)于直線對(duì)稱,函數(shù).在上,故,即的值域是,故選:D.【答案點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對(duì)稱性,余弦函數(shù)的值域,屬于中檔題10、D【答案解析】根據(jù)線面平行和面面平行的性質(zhì),可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【題目詳解】選項(xiàng)A:若,根據(jù)線面平行和面面平行的性質(zhì),有或,故A正確;選項(xiàng)B:若,由線面平行的判定定理,有,故B正確;選項(xiàng)C:若,故,所成的二面

11、角為,則,故C正確;選項(xiàng)D,若,有可能,故D不正確.故選:D【答案點(diǎn)睛】本題考查了空間中的平行垂直關(guān)系判斷,考查了學(xué)生邏輯推理,空間想象能力,屬于中檔題.11、A【答案解析】設(shè)的中點(diǎn)為O先求出外接圓的半徑,設(shè),利用平面ABC,得 ,在 及中利用勾股定理構(gòu)造方程求得球的半徑即可【題目詳解】設(shè)的中點(diǎn)為O,因?yàn)?,所以外接圓的圓心M在BO上.設(shè)此圓的半徑為r.因?yàn)椋?,解?因?yàn)?,所?設(shè),易知平面ABC,則.因?yàn)?,所以,即,解?所以球Q的半徑.故選:A【答案點(diǎn)睛】本題考查球的組合體,考查空間想象能力,考查計(jì)算求解能力,是中檔題12、A【答案解析】分析:通過(guò)對(duì)anan+1=2anan+1變形可知,

12、進(jìn)而可知,利用裂項(xiàng)相消法求和即可詳解:,又=5,即,數(shù)列前項(xiàng)的和為,故選A點(diǎn)睛:裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時(shí)很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),常見(jiàn)的裂項(xiàng)技巧:(1);(2) ; (3);(4) ;此外,需注意裂項(xiàng)之后相消的過(guò)程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問(wèn)題,導(dǎo)致計(jì)算結(jié)果錯(cuò)誤.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】設(shè),可得的取值范圍,分別利用基本不等式和,把用代換,結(jié)合的取值范圍求關(guān)于的二次函數(shù)的最值即可求解.【題目詳解】因?yàn)?,令,則 ,因?yàn)?當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以 ,即,令則函數(shù)的對(duì)稱軸為,所以當(dāng)時(shí)函數(shù)有最大值為,即當(dāng)且

13、,即,或,時(shí)取等號(hào);因?yàn)?當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,令,則函數(shù)的對(duì)稱軸為,所以當(dāng)時(shí),函數(shù)有最小值為,即,當(dāng),且時(shí)取等號(hào),所以.故答案為:【答案點(diǎn)睛】本題考查基本不等式與二次函數(shù)求最值相結(jié)合求代數(shù)式的取值范圍;考查運(yùn)算求解能力和知識(shí)的綜合運(yùn)用能力;基本不等式:和的靈活運(yùn)用是求解本題的關(guān)鍵;屬于綜合型、難度大型試題.14、63【答案解析】對(duì)進(jìn)行化簡(jiǎn),可得,再根據(jù)等比數(shù)列前項(xiàng)和公式進(jìn)行求解即可【題目詳解】由數(shù)列為首項(xiàng)為,公比的等比數(shù)列,所以63【答案點(diǎn)睛】本題考查等比數(shù)列基本量的求法,當(dāng)處理復(fù)雜因式時(shí),常用基本方法為:因式分解,約分。但解題本質(zhì)還是圍繞等差和等比的基本性質(zhì)15、2【答案解析】聯(lián)立直線

14、與拋物線的方程,根據(jù)一元二次方程的根與系數(shù)的關(guān)系以及面積關(guān)系求解即可.【題目詳解】如圖,設(shè),由,則,由可得,由,則,所以,得.故答案為:2【答案點(diǎn)睛】此題考查了拋物線的性質(zhì),屬于中檔題.16、.【答案解析】分析:由題意結(jié)合古典概型計(jì)算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對(duì)齊王的下等馬,田忌的上等馬對(duì)齊王的下等馬,田忌的上等馬對(duì)齊王的中等馬,結(jié)合古典概型公式可得,田忌的馬獲勝的概率為.點(diǎn)睛:有關(guān)古典概型的概率問(wèn)題,關(guān)鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù)(1)基本事件總數(shù)較少時(shí),用列舉法把所有基本事件一一列出時(shí)

15、,要做到不重復(fù)、不遺漏,可借助“樹(shù)狀圖”列舉(2)注意區(qū)分排列與組合,以及計(jì)數(shù)原理的正確使用.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2),.【答案解析】(1)根據(jù)數(shù)列的通項(xiàng)與前n項(xiàng)和的關(guān)系式,即求解數(shù)列的通項(xiàng)公式;(2)由(1)可得,利用等比數(shù)列的前n項(xiàng)和公式和裂項(xiàng)法,求得,結(jié)合題意,即可求解.【題目詳解】(1)由題意,當(dāng)時(shí),由,解得;當(dāng)時(shí),可得,即,顯然當(dāng)時(shí)上式也適合,所以數(shù)列的通項(xiàng)公式為.(2)由(1)可得,所以.因?yàn)閷?duì)恒成立,所以,.【答案點(diǎn)睛】本題主要考查了數(shù)列的通項(xiàng)公式的求解,等差數(shù)列的前n項(xiàng)和公式,以及裂項(xiàng)法求和的應(yīng)用,其中解答中熟記等差、等比

16、數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式,以及合理利用“裂項(xiàng)法”求和是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.18、(1)極小值為,極大值為.(2)【答案解析】(1)根據(jù)斜線的斜率即可求得參數(shù),再對(duì)函數(shù)求導(dǎo),即可求得函數(shù)的極值;(2)根據(jù)題意,對(duì)目標(biāo)式進(jìn)行變形,構(gòu)造函數(shù),根據(jù)是單調(diào)減函數(shù),分離參數(shù),求函數(shù)的最值即可求得結(jié)果.【題目詳解】(1)函數(shù)的定義域?yàn)?,可知,解得,可知在,時(shí),函數(shù)單調(diào)遞增,在時(shí),函數(shù)單調(diào)遞減,可知函數(shù)的極小值為,極大值為.(2)可以變形為,可得,可知函數(shù)在上單調(diào)遞減,可得,設(shè),可知函數(shù)在單調(diào)遞減,可知,可知參數(shù)的取值范圍為.【答案點(diǎn)睛】本題考查由切線的斜率求參數(shù)的值,以及

17、對(duì)具體函數(shù)極值的求解,涉及構(gòu)造函數(shù)法,以及利用導(dǎo)數(shù)求函數(shù)的值域;第二問(wèn)的難點(diǎn)在于對(duì)目標(biāo)式的變形,屬綜合性中檔題.19、(1)(2)證明見(jiàn)解析【答案解析】(1)分類討論,去絕對(duì)值求出函數(shù)的解析式,根據(jù)一次函數(shù)的性質(zhì),得出的單調(diào)性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化簡(jiǎn)后利用基本不等式求出的最小值,即可證出.【題目詳解】(1)解:當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.所以當(dāng)時(shí),取最小值.(2)證明:由(1)可知.要證明:,即證,因?yàn)?,為正?shí)數(shù),所以.當(dāng)且僅當(dāng),即,時(shí)取等號(hào),所以.【答案點(diǎn)睛】本題考查絕對(duì)值不等式和基本不等式的應(yīng)用,還運(yùn)用“乘1法”和分類討論思想,屬于中檔題

18、.20、(1),232;(2)【答案解析】(1) 根據(jù)公式代入求解;(2) 先列出基本事件空間,再列出要求的事件,最后求概率即可.【題目詳解】解:(1)由表格可求出代入公式求出,所以,所以當(dāng)時(shí),.所以可預(yù)測(cè)日平均氣溫為時(shí)該出租車公司的網(wǎng)約訂單數(shù)約為232份.(2)記這5天中氣溫不高于的三天分別為,另外兩天分別記為,則在這5天中任意選取2天有,共10個(gè)基本事件,其中恰有1天網(wǎng)約訂單數(shù)不低于210份的有,共6個(gè)基本事件,所以所求概率,即恰有1天網(wǎng)約訂單數(shù)不低于20份的概率為.【答案點(diǎn)睛】考查線性回歸系數(shù)的求法以及古典概型求概率的方法,中檔題.21、 (1) (2) 【答案解析】(1)先利用等比數(shù)列的性質(zhì),可分別求出的值,從而可求出數(shù)列的通項(xiàng)公式;(2)利用錯(cuò)位相減求和法可求出數(shù)列的前項(xiàng)和【題目詳解】解:(1)由是遞增等比數(shù)列,聯(lián)立 ,解得或,因?yàn)閿?shù)列是遞增數(shù)列,所以

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論