(教師版)§2、8追及與相遇問題_第1頁
(教師版)§2、8追及與相遇問題_第2頁
(教師版)§2、8追及與相遇問題_第3頁
(教師版)§2、8追及與相遇問題_第4頁
(教師版)§2、8追及與相遇問題_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、PAGE PAGE - 9 -(教師版)2、8 追及與相遇問題“追及”、“相碰”是運動學(xué)中研究同一直線上兩個物體的運動時常常涉及的兩類問題,也是勻變速直線運動規(guī)律在實際問題中的具體應(yīng)用。1、兩者的基本特征相同:在“追上”、“相遇”運動過程中,兩個物體在同一時刻處于同一位置。 2解決“追及”、“相碰”問題的思路:(1)根據(jù)對兩物體運動過程的分析,畫出物體的運動示意圖(2)根據(jù)兩物體的運動性質(zhì),分別列出兩個物體的位移方程注意要將兩物體運動時間的關(guān)系反映在方程中(3)由運動示意圖找出兩物體位移間的關(guān)聯(lián)方程(4)聯(lián)立方程求解(勻加速追勻速)【例1】甲、乙兩輛汽車同向行駛,當(dāng)t=0時,乙車在甲車前面24

2、m處。它們的運動規(guī)律分別為s甲=10t,s乙=t2。(1)甲、乙分別做什么運動?(2)甲、乙兩輛汽車能否有兩次相遇?如果能,求出兩次相遇的時刻和兩次相遇處相距多遠?如果不能,求出什么時刻兩車距離有最值?是多少?解:(1)甲做速度為=10m/s的勻速直線運動; 乙做初速度為零,加速度為a=2m/s2的勻加速直線運動。(2)甲、乙兩輛汽車能有兩次相遇。 當(dāng)甲的速度時,由,得:乙車通過的位移:由,得:甲車通過的位移: 由于,故在達到共同速度前,兩車已相遇一次。之后甲車在前,乙車在后。再經(jīng)過一段時間,乙車速度大于甲車速度,再相遇一次。故能有兩次相遇。設(shè)從開始運動到甲、乙兩車相遇所用時間為,則: = 1

3、 * GB3 = 2 * GB3 由幾何關(guān)系,得: = 3 * GB3 結(jié)合 = 1 * GB3 = 3 * GB3 式,有:解得:,兩次相遇處相距:(相遇問題)【例2】 A、B兩列火車,在同一軌道上同向行駛,A車在前,其速度vA=10 m/s,B車速度vB=30 m/s。因大霧能見度很低,B車在距A車500 m時才發(fā)現(xiàn)前方有A車,這時B車立即剎車,但B車要經(jīng)過1800 m才能夠停止。問:(1)A車若按原速前進,兩車是否會相撞?若會相撞,將在何時何地?(2)若B車在剎車的同時發(fā)出信號,A車司機經(jīng)t =1.5 s收到信號后加速前進,則A車的加速度至少多大才能避免相撞事故?解析:(1)為了求解簡便

4、,我們先以A車為參考系,設(shè)在B車恰能追上A車的情況下,A、B兩車之間的初始間距為s0,則(vBvA)2=2as0再以地面為參考系,設(shè)B車的最大滑行距離為s1,則vB2=2as1解兩式可得s0=800 m因為s0500 m,所以兩車一定相撞。設(shè)兩車經(jīng)時間t相撞,則有:vtat2=vAt+s由式得:a=0.25 m/s2,代入式得t=80 - 20s=31.01 s.設(shè)相撞地點距B車剎車地點sB,則有sB=vAt+s=1031.01 m+500 m=810.1 m.(2)設(shè)B車恰好不與A車相碰,A車的加速度為a,當(dāng)B車追上A車時,兩者速度相同,所以有:sA+s=sB, sB=vBtat2 sA=v

5、At+a(tt)2 vBat=vA+a(tt)又vB2=2as1 所以t=49.43 s, a=0.15 m/s2.故當(dāng)A車加速度大于或等于0.15 m/s2時,可避免兩車相撞.答案:(1)相撞,31.01 s后距B點810.1 m處 (2)0.15 m/s2(多種解法)【例3】火車以速度v1勻速行駛,司機發(fā)現(xiàn)前方同軌道上相距s處有另一列火車沿同方向以速度v2(對地、且v1v2)做勻速運動.司機立即以加速度a緊急剎車.要使兩車不相撞,a應(yīng)滿足什么條件?【解析】 此題有多種解法.解法1:兩車運動情況如圖所示,后車剎車后雖做勻減速運動,但在其速度減小至和v2相等之前,兩車的距離仍將逐漸減??;當(dāng)后車

6、速度減小至小于前車速度,兩車距離將逐漸增大.可見,當(dāng)兩車速度相等時,兩車距離最近.若后車減速的加速度過小,則會出現(xiàn)后車速度減為和前車速度相等之前即追上前車,發(fā)生撞車事故;若后車減速的加速度過大,則會出現(xiàn)后車速度減為和前車速度相等時仍未追上前車,根本不可能發(fā)生撞車事故;若后車加速度大小為某值時,恰能使兩車在速度相等時后車追上前車,這正是兩車恰不相撞的臨界狀態(tài),此時對應(yīng)的加速度即為兩車不相撞的最小加速度.綜上分析可知,兩車恰不相撞時應(yīng)滿足下列兩方程: v1ta0t2v2ts v10tv2解之可得:0.所以當(dāng)a時,兩車即不會相撞.解法2:要使兩車不相撞,其位移關(guān)系應(yīng)為 v1tt2sv2t即 at2(

7、v2v1)ts0對任一時間t,不等式都成立的條件為 (v2v1)22s0由此得a解法3:以前車為參照物,剎車后后車相對前車做初速度v0v1v2,加速度為a的勻減速直線運動.當(dāng)后車相對前車的速度減為零時,若相對位移ss,則不會相撞.故由 ss 得 a.【說明】 解法1注重對運動過程的分析,抓住兩車間距離有極值時速度應(yīng)相等這一關(guān)鍵條件來求解;解法2中由位移關(guān)系得到一元二次方程,然后利用根的判別式來確定方程中各系數(shù)間的關(guān)系,這也是中學(xué)物理中常用的數(shù)學(xué)方法;解法3通過巧妙地選取參照物,使兩車運動的關(guān)系變得簡明.【設(shè)計意圖】 (1)說明追及、相遇和避碰問題的分析方法;(2)說明如何根據(jù)臨界條件求解臨界問

8、題:(3)說明一個物理問題可有多種分析方法.總結(jié)1:分析“追及”、“相碰”問題應(yīng)注意:(1)分析“追及”、“相碰”問題時,一定要抓住一個條件,兩個關(guān)系:一個條件是兩物體的速度滿足的臨界條件, 追和被追的兩物體的速度相等(同向運動)是能否追上及兩者距離有極值的臨界條件。如兩物體距離最大、最小,恰好追上或恰好追不上等兩個關(guān)系是時間關(guān)系和位移關(guān)系 (2)若被追趕的物體做勻減速運動,一定要注意追上前該物體是否停止運動(3)仔細審題,注意抓住題目中的關(guān)鍵字眼,充分挖掘題目中的隱含條件如“剛好”、“恰好”、“最遠”、“至少”等,往往對應(yīng)一個臨界狀態(tài),滿足相應(yīng)的臨界條件 4解決追及和相碰問題大致分為兩種方法

9、。即數(shù)學(xué)方法和物理方法求解過程中??梢杂胁煌乃悸?。例如考慮圖象法等等(勻加速追勻速)【例4】一輛摩托車行駛的最大速度為30m/s?,F(xiàn)讓該摩托車從靜止出發(fā),要在4min內(nèi)追上它前方相距1km、正以25m/s的速度在平直公路上行駛的汽車,則該摩托車行駛時,至少應(yīng)具有多大的加速度?解:假設(shè)摩托車一直勻加速追趕汽車。則:V0t+S0 (1)a =(m/s2) (2)摩托車追上汽車時的速度:V = at = 0.24240 = 58 (m/s) (3)因為摩托車的最大速度為30m/s,所以摩托車不能一直勻加速追趕汽車。應(yīng)先勻加速到最大速度再勻速追趕。 (4) Vm at1 (5)由(4)(5)得:t1

10、=40/3(秒) a=2.25 (m/s)【例5】甲、乙兩車在同一條平直公路上行駛,加速度都是向東的a=5m/s2,甲車某時刻從車站A由靜止開始運動,乙車在甲車運動后3s以向東18m/s 的初速度從同一點A出發(fā),問乙車出發(fā)后多少時間,甲、乙兩車的距離是乙車開始出發(fā)時甲、乙兩車距離的2倍?(22.5s)(勻速追勻減速)【例6】如圖所示,A、B兩物體相距s=7m,物體A以= 4 m/s的速度向右勻速運動,而物體B此時的速度=10 m/s,只在摩擦力作用下向右做勻減速運動,加速度那么物體A追上物體B所用的時間為( )A7 s B8 s C9 s D10 s【解析】B 物體B從開始到停下來所用的時間t

11、=5s,在此時間內(nèi)B前進的距離= t=25 m,A前進的距離=20m。故此時刻A、B相距(5 +7)m=12 m,所以再經(jīng)過3 sA才能追上B,故物體A追上物體B所用的時間為8s。(勻減速追勻速)【例7】在一條平直的公路上,乙車以10m/s的速度勻速行駛,甲車在乙車的后面作初速度為15m/s,加速度大小為0.5m/s2的勻減速運動,則兩車初始距離L滿足什么條件時可以使(1)兩車不相遇; (2)兩車只相遇一次; (3)兩車能相遇兩次(設(shè)兩車相遇時互不影響各自的運動)。解析:設(shè)兩車速度相等經(jīng)歷的時間為t,則甲車恰能追及乙車時,應(yīng)有v甲ta甲t2/2=v乙t+L其中t=(v甲v乙)/a甲,解得L=2

12、5m若L25m,則兩車等速時也未追及,以后間距會逐漸增大。若L=25m,則兩車等速時恰追及,兩車只相遇一次,以后間距會逐漸增大。若L25m,則兩車等速時,甲車已運動至乙車前面,以后還能再次相遇,即能相遇兩次?!纠?】在某市區(qū)內(nèi),一輛汽車在平直的公路上以速度vA向東勻速行駛,一位觀光游客正由南向北從斑馬線上橫過馬路,汽車司機發(fā)現(xiàn)前方有危險(游客正在D處向北走),經(jīng)0.7 s作出反應(yīng),從A點開始緊急剎車,但仍將正步行至B處的游客撞傷,該車最終在C處停下,為了清晰了解事故現(xiàn)場.現(xiàn)以圖示之:為了判斷汽車司機是否超速行駛,并測出肇事汽車的速度vA,警方派一車胎磨損情況與肇事汽車相當(dāng)?shù)能囈苑ǘㄗ罡咚俣葀m

13、14.0 m/s行駛在同一馬路的同一地段,在肇事汽車的出事點B急剎車,恰好也在C點停下來,在事故現(xiàn)場測得AB=17.5 m、BC14.0 m、BD2.6 m,問:(1)該肇事汽車的初速度vA是多大?(2)游客橫過馬路的速度是多大?【解析】 (1)以警車為研究對象,則v22v022as將vm14.0 m/s,s14.0 m,v20代入得警車剎車加速度大小為a=7.0 m/s2因為警車行駛條件與肇事汽車相同,aga所以肇事汽車的初速度vA21 m/s(2)肇事汽車在出事點B的速度:vB14 m/s肇事汽車通過段的平均速度: m/s17.5 m/s肇事汽車通過AB段的時間:t2 s1 s所以游客橫過

14、馬路的速度:v人 m/s1.52 m/s.【答案】 (1)21 m/s (2)1.53 m/s【例9】一輛長為5m的汽車以m/s的速度行駛,在離鐵路與公路交叉點175m處,汽車司機突然發(fā)現(xiàn)離交叉點200m處有一列長300m的列車以m/s的速度行駛過來,為了避免事故的發(fā)生,汽車司機應(yīng)采取什么措施?(不計司機的反應(yīng)時間,)解:若汽車先于列車通過交叉點,則用時 而,汽車必須加速,設(shè)加速度為a1,則 得若汽車在列車之后通過交叉點,則汽車到達交叉點用時 ,又,汽車必須減速,而且在交叉點前停下來,設(shè)汽車的加速度大小為a2,則,所以汽車司機可以讓汽車以m/s2加速通過或以m/s2減速停下?!纠?0】羚羊從靜

15、止開始奔跑,經(jīng)過s10=50 m距離能加速到最大速度v1=25 m/s,并能維持一段較長的時間;獵豹從靜止開始奔跑,經(jīng)過s20=60 m的距離能加速到最大速度v2=30 m/s,以后只能維持這個速度4.0 s。設(shè)獵豹距離羚羊x m時開始攻擊,羚羊則在獵豹開始攻擊后1.0 s才開始奔跑,假定羚羊和獵豹在加速階段分別做勻加速運動,且均沿同一直線奔跑.求:(1)獵豹要在其最大速度減速前追到羚羊,x值應(yīng)在什么范圍?(2)獵豹要在其加速階段追上羚羊,x值應(yīng)在什么范圍?【解析】 (1)設(shè)獵豹在最大速度將要減速時恰追上羚羊,則獵豹運動的位移和時間分別為s1=s10+v1mt1=60 m+304.0 m=18

16、0 mt1=+t1= s+4.0 s=8.0 s則羚羊運動的時間為t2=t1-1=7.0 s羚羊加速的時間為t2= s=4.0 s故羚羊勻速運動的時間為t2=t2-t2=3.0 s羚羊的位移為s2=s20+v2mt2=50 m+253.0 m=125 m則為使獵豹能在從最大速度減速前追上羚羊,應(yīng)有xs1-s2=55 m(2)獵豹加速的時間和位移分別為t1=4.0 s s1=60 m羚羊加速運動的加速度和位移分別為a2= m/s2 =6.25 m/s2 s2=a2(t1-1)2=6.253.02 m=28.1 m為使獵豹能在加速階段追上羚羊,應(yīng)有xs1-s2=31.9 m【答案】 (1)x55

17、m;(2)x31.9 m總結(jié)2:追及、相遇的問題,其實質(zhì)就是分析討論兩物體在相同時間內(nèi)能否到達相同的空間位置問題。1兩個關(guān)系:即時間關(guān)系和位移關(guān)系2一個條件:即兩者速度相等,它往往是物體間能否追上、追不上或(兩者)距離最大、最小的臨界條件,也是分析判斷的切入點。常見的情況有:(1)物體A追上物體B:開始時,兩個物體相距s0,則A追上B時,必有sA-sB=s0,且vAvB。(2)物體A追趕物體B:開始時,兩個物體相距s0,要使兩物體恰好不相撞,必有sA-sB=s0,且vAvB。課堂鞏固練習(xí)l如圖所示是甲、乙兩物體從同一地點同時沿同一方向運動的速度圖象,且,則:( AD )A在時刻,乙物體在前,甲

18、物體在后 B甲的加速度比乙大C在時刻甲乙兩物體相遇 D在時刻甲乙兩物體相遇2兩輛完全相同的汽車,沿水平直路一前一后勻速行駛,速度均為v0,若前車突然以恒定的加速度剎車,在它剛停住時,后車以前車剎車時的加速度開始剎車已知前車在剎車過程中所行的距離為s,若要保證兩車在上述情況中不相撞,則兩車在勻速行駛時保持的距離至少應(yīng)為( B )A s B2s C3s D4s3、兩輛游戲賽車、在兩條平行的直車道上行駛。時兩車都在同一計時線處,此時比賽開始。它們在四次比賽中的圖如圖所示。哪些圖對應(yīng)的比賽中,有一輛賽車追上了另一輛( AC ) 【解析】AC 在圖象中,圖線和坐標軸包圍的面積,在數(shù)值上等于位移的大小。若

19、要一輛車追上另一輛車,位移應(yīng)該相等,在圖象中,面積應(yīng)該相等,所以AC正確?!军c評】該題考查了追及問題及對圖象的理解。解決該題也可以采用公式法,但太復(fù)雜。4甲乙兩車在公路上沿同一方向做直線運動,它們的圖象如圖所示.兩圖象在t= 時相交于P點,P在橫軸上的投影為Q ,OPQ的面積為S。在t=0時刻,乙車在甲車前面,相距為d。已知此后兩車相遇兩次,且第一次相遇的時刻為,則下面四組和d的組合可能的是( D )A BC D【解析】 本題考查了運動學(xué)中的圖象問題。由圖象分析得此為典型的追及類問題,甲車速度不變從t=0時刻起勻速前進,乙車從t=0時做勻加速運動,且。當(dāng)甲乙第一次相遇時有,且由圖象可知,故,代

20、入前式可得。5在輕繩的兩端各拴一個小球,一個人用手拿著繩子上端的小球,站在三層樓的陽臺上,釋放小球,使小球自由下落,兩小球相繼落地的時間差為出,如果人站在四層樓的陽臺上,同樣的方法釋放小球,讓小球自由下落則兩小球相繼落地的時間差將( C ) 圖262A不變 B變大 C變小 D無法確定 【分析】設(shè)下端小球A著地時的速度為VA,所需時間為tA,上端小球B著地時的速度為VB,所需時間為tB,它們的V一t圖象如圖262所示,圖中陰影部分的面積表示兩球的位移差,即繩子的長度,由于繩長不變,A球距地越高,落地時的速度VA也越大,同時VB也越大,因此tB一A就越小 故本題正確答案是C6如圖所示,a、b分別表

21、示先后從同一地點以相同的初速度做勻變速直線運動的兩個物體的速度圖象,則下列說法正確的是 ( AC ) A4s末兩個物體速率相等 B5s末兩個物體速率相等C4s末兩個物體相遇 D5s末兩個物體相遇 【分析】由圖象可知,4s末兩物體的速度大小相等,均為10m/s,方向相反,故選項A正確;O4s內(nèi)兩物體的位移分別為 由此可知,4s末兩物體相遇故選項C正確.5s末物體口的速度為一20m/s,物體b的速度為O,此時位移分別為 由此可知,選項B、D均錯誤綜上所述,本題正確答案為A、C7、如圖所示,處于平直軌道上的甲、乙兩物體相距為s,同時、同向開始,甲以初速度v、加速度a1做勻加速直線運動,乙做初速度為零

22、、加速度a2的勻加速直線運動,假設(shè)甲能從乙旁邊通過,下述情況可能發(fā)生的是( C )A.a1=a2時,能相遇兩次 B.a1a2時,能相遇兩次C.a1a2時,能相遇兩次 D.a1a2時,能相遇一次【解析】 若a1=a2或a1a2,總有v甲v乙,甲追上乙后,乙不可能再追上甲,只能相遇一次.若a1a2,開始一段時間內(nèi),v甲v乙,甲可能追上乙,然后又有v甲v乙,乙又能追上甲,故甲、乙可能相遇兩次.C選項正確.【答案】 C8、兩輛完全相同的汽車,沿水平路面一前一后均以20 m/s的速度前進,若前車突然以恒定的加速度剎車,在它剛停車時,后車以前車剎車時的加速度的2倍開始剎車,已知前車在剎車過程所行駛的距離為

23、100 m,若要保證兩車在上述情況下不相撞,則兩車在勻速行駛時保持的最小距離是 .【解析】 設(shè)前車剎車過程的位移為s1,加速度為a,則有:s1=100 m在前車剎車的過程中,后車仍以v0勻速運動,在這段時間內(nèi)它的位移為s2=2s1=200 m后車剎車的位移為s2= m故從前車開始剎車到后車也停下來,后車的總位移為s2=s2+s2=250 m兩車勻速運動時它們間的距離為s=s2-s1=250 m-100 m=150 m9、一輛值勤的警車停在公路旁,當(dāng)警員發(fā)現(xiàn)從他旁邊以v =8m/s的速度勻速行駛的貨車有違章行為時,決定前去攔截,經(jīng)2.5s,警車發(fā)動起來,以a=2加速度勻加速開出,警車以加速度a=

24、2維持勻加速運動能達到的最大速度為108km/h,試問:(1)在警車追上貨車之前,兩車間的最大距離是多少?(2)警車要多長時間才能追上違章的貨車?【解析】(1)當(dāng)兩車速度相等時兩車相距最遠,即 兩車相距 (2)設(shè)警車在勻加速運動中經(jīng)時間t追上貨車,則有 代入數(shù)據(jù)得 此時警車速度,因此警車發(fā)動后,10s可追上貨車。10A、B兩輛汽車在筆直的公路上同向行駛,當(dāng)B車在A車前84 m處時,B車速度為4 m/s,且正以2的加速度做勻加速運動;經(jīng)過一段時間后,B車加速度突然變?yōu)榱?。A車一直以20 m/s的速度做勻速運動。經(jīng)過12s后兩車相遇,問B車加速行駛的時間是多少?【解析】設(shè)A車的速度為,B車加速行駛

25、時間為t,兩車在時相遇。則有 式中,=12 s,分別為A、B兩車相遇前行駛的路程,依題意有式中s=84 m,由此解得代入題給數(shù)據(jù)=20 m/s,=4 m/s,a=2 有式中t的單位為s。解得 其中不合題意,舍去。因此,B車加速行駛的時間為6 s。11如圖所示,甲、乙兩個同學(xué)在直跑道上練習(xí)4100 m接力,他們在奔跑時有相同的最大速度。乙從靜止開始全力奔跑需跑出25 m才能達到最大速度,這一過程可看作勻變速直線運動,現(xiàn)在甲持棒以最大速度向乙奔來,乙在接力區(qū)伺機全力奔出。若要求乙接棒時奔跑達到最大速度的80%,則:(1)乙在接力區(qū)須奔出多少距離?(2)乙應(yīng)在距離甲多遠時起跑?【解析】(1)設(shè)兩人奔跑的最大速度為v,乙在接力區(qū)奔出的距離為x時速度達到最大速度的80%,根據(jù)運動學(xué)公式有:v2=2ax 即(0.8v)2=2ax

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論