三支決策算法(ThreeDecisonWay)用于多分類任務(wù)的Matlab程序_第1頁
三支決策算法(ThreeDecisonWay)用于多分類任務(wù)的Matlab程序_第2頁
三支決策算法(ThreeDecisonWay)用于多分類任務(wù)的Matlab程序_第3頁
三支決策算法(ThreeDecisonWay)用于多分類任務(wù)的Matlab程序_第4頁
三支決策算法(ThreeDecisonWay)用于多分類任務(wù)的Matlab程序_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、三支決策算法(ThreeDecisonWay)用于多分類任務(wù)的Matlab程序functionresult=TDW_multiclass(TrainingData_File)%ThisisafunctionexpandTDWtomulticlass%該函數(shù)是基于one-vs-one方法的得到的處理多類問題的TDW分類器%trainX訓(xùn)練樣本的特征向量構(gòu)成的n行m列矩陣,每一行是一個(gè)樣本%trainY訓(xùn)練樣本的標(biāo)簽構(gòu)成的n行Q列矩陣,每一行對(duì)應(yīng)一個(gè)樣本,Q表示類別的個(gè)數(shù),%如果第i個(gè)樣本屬于第j類則trainY(i,j)=1,且trainY(i,:)中的其它元素都為-1%Getthedetail

2、ofdatasettrain_data=load(TrainingData_File);Y,=Data(train_data);trainY=Y;trainX=X;n,m=size(trainY);Sample_size=zeros(m,1);Class=,;Sample_area=zeros(n,m);%Gettheareaof2classofsamplesforr=1:m,flagp=;flagpY=;fori=1:niftrainY(i,r)=1flagp=flagp;trainX(i,:);flagpY=flagpY;trainY(i,:);endendnp=size(flagp,1)

3、;ifr+1Rho&Ratio_BN10*Rho&Ratio_BN1result=Overlapping;elseresult=Inter|Intar;enddisp(DatasetCategory=,result);endfunctionDatasetCategory=TDW_Func(TrainingData_File)%*Thisfunctionaimtoclassifydataset(binaryonly)*%Setdatasetandinitialization%TrainingData_File=adult.csv;train_data=load(TrainingData_File

4、);train_target,P,NumberofData,NumberofInputNeurons,=Data(train_data);n=0;k=0;%DistancebetweeneachsampleandtherestofthesampleDistance=zeros(NumberofData-1,NumberofData);fori=1:1:NumberofDataforj=1:1:NumberofDatasum=0;ifijfork=1:NumberofInputNeuronssum=sum+power(P(k,i)-P(k,j),2);Distance(j,i)=sqrt(sum

5、);endelseifijfork=1:NumberofInputNeuronssum=sum+power(P(k,i)-P(k,j),2);Distance(j-1,i)=sqrt(sum);endendendend%size(Distance)%Distance1=Distance;%Distance(Distance=0)=;%size(Distance)%Distance=reshape(Distance,NumberofData-1,NumberofData);%Thei-thcolumnisthedistance%ofthei-1thsampleandtheremainingi-1

6、samples%Determiningthevalueofneighborhood%Distance_sorted=zeros(NumberofData-1.NumberofData);w=0.1;%Range(0,1),itthekeytodeterminingthenumberofneigborhoodsamplesw=0.1;%Range(0,1),itthekeytodeterminingthenumberofneigborhoodsamplesfori=1:NumberofDataDistance_c=Distance(:,i);table=tabulate(Distance_c);

7、n,m=size(table);Distance_sorted(1:n,i)=table(:,1);%ArrangethrdistancefromlargetosmallendDelata=zeros(1,NumberofData);%ForeverysamplehasaDelatafori=1:NumberofDataDelata(1,i)=min(Distance_sorted(:,i)+w*(max(Distance_sorted(:,i)-min(Distance_sorted(:,i);end%GetthesamplebelongstotheneighborhoodDistance_

8、neig=zeros(NumberofData-1,NumberofData,2);fori=1:NumberofDatak=1;forj=1:NumberofData-1ifDistance(j,i)Delata(1,i)Distance_neig(k,i,1)=Distance(j,i);ifjiDistance_neig(k,i,2)=train_target(1,j);elseDistance_neig(k,i,2)=train_target(1,j+1);endk=k+1;endendend%Determiningwhichareathesampleisalph=5;beta=-5/

9、6;%PartitionparameterNumberofPos=0;NumberofBnd=0;NumberofNeg=0;%Initializethenumberofdifferentareasamplefx=zeros(NumberofData,1);table=tabulate(train_target(1,:);iftable(1,2)alphNumberofPos=NumberofPos+1;PosData(1,NumberofPos)=train_target(1,i);PosData(2:NumberofInputNeurons+1,NumberofPos)=P(:,i);el

10、seiffx(i)=betaNumberofBnd=NumberofBnd+1;NumberofBnd=NumberofBnd+1;BndData(1,NumberofBnd)=train_target(1,i);BndData(2:NumberofInputNeurons+1,NumberofBnd)=P(:,i);elseiffx(i)betaNumberofNeg=NumberofNeg+1;NegData(1,NumberofNeg)=train_target(1,i);NegData(2:NumberofInputNeurons+1,NumberofNeg)=P(:,i);enden

11、difNumberofNeg0.7*NumberofDataDatasetCategory=Inter_calss;elseifNumberofNeg0.1*NumberofData&NumberofBnd0.3*NumberofData&NumberofNegjfork=1:NumberofInputNeuronssum=sum+power(P(k,i)-P(k,j),2);Distance(j,i)=sqrt(sum);endelseifijfork=1:NumberofInputNeuronssum=sum+power(P(k,i)-P(k,j),2);Distance(j-1,i)=s

12、qrt(sum);endendendend%Determiningthevalueofneighborhood%Distance_sorted=zeros(NumberofData-1.NumberofData);w=0.05;%Range(0.01,0.05),itsthekeytodeterminingthenumberofneigborhoodsamplesfori=1:NumberofDataDistance_c=Distance(:,i);table=tabulate(Distance_c);n,m=size(table);Distance_sorted(1:n,i)=table(:

13、,1);%ArrangethedistancefromlargetosmallendDelata=zeros(1,NumberofData);%ForeverysamplehasaDelatafori=1:NumberofDataDelata(1,i)=min(Distance_sorted(:,i)+w*(max(Distance_sorted(:,i)-min(Distance_sorted(:,i);end%GetthesamplebelongstotheneighborhoodDistance_neig=zeros(NumberofData-1,NumberofData,2);fori

14、=1:NumberofDatak=1;forj=1:NumberofData-1ifDistance(j,i)Delata(1,i)Distance_neig(k,i,1)=Distance(j,i);ifjiDistance_neig(k,i,2)=train_target(1,j);elseDistance_neig(k,i,2)=train_target(1,j+1);endk=k+1;endendend%UseKNNtogettheKnearestsamplek=15;%ifuseKNN,thekisakeypartemeterIDX=knnsearch(P,P,K,k,Distanc

15、e,euclidean);%返回每個(gè)樣本的K近鄰樣本,每行代表每個(gè)樣本的K近鄰樣本的索引值%Determiningwhichareathesampleisalph=K;beta=-K/(K+1);NumberofPos=0;NumberofBnd=0;NumberofNeg=0;fx=zeros(NumberofData,1);%正域與邊界域的閾值%Partitionparameter%Initializethenumberofdifferentareasampletable=tabulate(train_target(1,:);iftable(1,2)=alph%正域判斷NumberofPos=NumberofPos+1;PosData(1,NumberofPos)=train_target(1,i);PosData(2:NumberofInputNeurons+1,NumberofPos)=P(:,i);PBN(i,1)=1;elseiffx(i)beta%邊界域判斷NumberofBnd=NumberofBnd+1;BndData(1,NumberofBnd)=train_ta

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論