云南省曲靖市麒麟?yún)^(qū)2022年高考數(shù)學一模試卷含解析_第1頁
云南省曲靖市麒麟?yún)^(qū)2022年高考數(shù)學一模試卷含解析_第2頁
云南省曲靖市麒麟?yún)^(qū)2022年高考數(shù)學一模試卷含解析_第3頁
云南省曲靖市麒麟?yún)^(qū)2022年高考數(shù)學一模試卷含解析_第4頁
云南省曲靖市麒麟?yún)^(qū)2022年高考數(shù)學一模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項1考試結束后,請將本試卷和答題卡一并交回2答題前,請務必將自己的姓名、準考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目

2、要求的。1已知,則( )ABCD22已知集合,則集合的非空子集個數(shù)是( )A2B3C7D83下圖是民航部門統(tǒng)計的某年春運期間,六個城市售出的往返機票的平均價格(單位元),以及相比于上一年同期價格變化幅度的數(shù)據(jù)統(tǒng)計圖,以下敘述不正確的是( )A深圳的變化幅度最小,北京的平均價格最高B天津的往返機票平均價格變化最大C上海和廣州的往返機票平均價格基本相當D相比于上一年同期,其中四個城市的往返機票平均價格在增加4下列不等式正確的是( )ABCD5函數(shù)在上的圖象大致為( )ABCD6設,為非零向量,則“存在正數(shù),使得”是“”的( )A既不充分也不必要條件B必要不充分條件C充分必要條件D充分不必要條件7設

3、不等式組表示的平面區(qū)域為,若從圓:的內(nèi)部隨機選取一點,則取自的概率為( )ABCD8若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統(tǒng)計圖如下面的條形圖.該教師退休后加強了體育鍛煉,目前月退休金的各種用途占比統(tǒng)計圖如下面的折線圖.已知目前的月就醫(yī)費比剛退休時少100元,則目前該教師的月退休金為( ). A6500元B7000元C7500元D8000元9已知函數(shù),則( )A2B3C4D510設,集合,則()ABCD11已知正三棱錐的所有頂點都在球的球面上,其底面邊長為4,、分別為側(cè)棱,的中點.若在三棱錐內(nèi),且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為(

4、 )ABCD12已知全集,集合,則( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13若函數(shù)(a0且a1)在定義域m,n上的值域是m2,n2(1mn),則a的取值范圍是_14在平面五邊形中,且.將五邊形沿對角線折起,使平面與平面所成的二面角為,則沿對角線折起后所得幾何體的外接球的表面積是_.15設向量,且,則_.16如圖,直線是曲線在處的切線,則_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù),.(1)當時,求函數(shù)在點處的切線方程;比較與的大小; (2)當時,若對時,且有唯一零點,證明:18(12分)設復數(shù)滿足(為虛數(shù)單位),則的模為_.1

5、9(12分)已知函數(shù),其中.(1)當時,求在的切線方程;(2)求證:的極大值恒大于0.20(12分)設函數(shù),其中是自然對數(shù)的底數(shù).()若在上存在兩個極值點,求的取值范圍;()若,函數(shù)與函數(shù)的圖象交于,且線段的中點為,證明:.21(12分)如圖,為坐標原點,點為拋物線的焦點,且拋物線上點處的切線與圓相切于點(1)當直線的方程為時,求拋物線的方程;(2)當正數(shù)變化時,記分別為的面積,求的最小值22(10分)已知函數(shù).(1)若函數(shù)不存在單調(diào)遞減區(qū)間,求實數(shù)的取值范圍;(2)若函數(shù)的兩個極值點為,求的最小值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是

6、符合題目要求的。1B【解析】結合求得的值,由此化簡所求表達式,求得表達式的值.【詳解】由,以及,解得.故選:B【點睛】本小題主要考查利用同角三角函數(shù)的基本關系式化簡求值,考查二倍角公式,屬于中檔題.2C【解析】先確定集合中元素,可得非空子集個數(shù)【詳解】由題意,共3個元素,其子集個數(shù)為,非空子集有7個故選:C【點睛】本題考查集合的概念,考查子集的概念,含有個元素的集合其子集個數(shù)為,非空子集有個3D【解析】根據(jù)條形圖可折線圖所包含的數(shù)據(jù)對選項逐一分析,由此得出敘述不正確的選項.【詳解】對于A選項,根據(jù)折線圖可知深圳的變化幅度最小,根據(jù)條形圖可知北京的平均價格最高,所以A選項敘述正確.對于B選項,根

7、據(jù)折線圖可知天津的往返機票平均價格變化最大,所以B選項敘述正確.對于C選項,根據(jù)條形圖可知上海和廣州的往返機票平均價格基本相當,所以C選項敘述正確.對于D選項,根據(jù)折線圖可知相比于上一年同期,除了深圳外,另外五個城市的往返機票平均價格在增加,故D選項敘述錯誤.故選:D【點睛】本小題主要考查根據(jù)條形圖和折線圖進行數(shù)據(jù)分析,屬于基礎題.4D【解析】根據(jù),利用排除法,即可求解【詳解】由,可排除A、B、C選項,又由,所以故選D【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),以及對數(shù)的比較大小問題,其中解答熟記三角函數(shù)與對數(shù)函數(shù)的性質(zhì)是解答的關鍵,著重考查了推理與運算能力,屬于基礎題5A【解析】首先判斷函數(shù)

8、的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,故函數(shù)為偶函數(shù),圖象關于軸對稱,排除C;而,排除B;,排除D.故選:.【點睛】本題考查函數(shù)圖象的識別,函數(shù)的奇偶性的應用,屬于基礎題.6D【解析】充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運算即可說明成立;必要性中,由數(shù)量積運算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D【點睛】本題考查平面向量數(shù)量積的運算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.7B【解析】畫出不等式組表示的可行域,求得

9、陰影部分扇形對應的圓心角,根據(jù)幾何概型概率計算公式,計算出所求概率.【詳解】作出中在圓內(nèi)部的區(qū)域,如圖所示,因為直線,的傾斜角分別為,所以由圖可得取自的概率為.故選:B【點睛】本小題主要考查幾何概型的計算,考查線性可行域的畫法,屬于基礎題.8D【解析】設目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結果即可【詳解】設目前該教師的退休金為x元,則由題意得:600015%x10%1解得x2故選D【點睛】本題考查由條形圖和折線圖等基礎知識解決實際問題,屬于基礎題9A【解析】根據(jù)分段函數(shù)直接計算得到答案.【詳解】因為所以.故選:.【點睛】本題考查了分段函數(shù)計算,意在考查學生的計算能力.10

10、B【解析】先化簡集合A,再求.【詳解】由 得: ,所以 ,因此 ,故答案為B【點睛】本題主要考查集合的化簡和運算,意在考查學生對這些知識的掌握水平和計算推理能力.11D【解析】如圖,平面截球所得截面的圖形為圓面,計算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點記為,連接、.依題意,所以,設球的半徑為,在中,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點睛】本題考查了三棱錐的外接球問

11、題,三棱錐體積,球體積,意在考查學生的計算能力和空間想象能力.12B【解析】直接利用集合的基本運算求解即可【詳解】解:全集,集合,則,故選:【點睛】本題考查集合的基本運算,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。13 (1,)【解析】在定義域m,n上的值域是m2,n2,等價轉(zhuǎn)化為與的圖像在(1,)上恰有兩個交點,考慮相切狀態(tài)可求a的取值范圍.【詳解】由題意知:與的圖像在(1,)上恰有兩個交點考查臨界情形:與切于,故答案為:.【點睛】本題主要考查導數(shù)的幾何意義,把已知條件進行等價轉(zhuǎn)化是求解的關鍵,側(cè)重考查數(shù)學抽象的核心素養(yǎng).14【解析】設的中心為,矩形的中心為,過作垂直于平面的

12、直線,過作垂直于平面的直線,得到直線與的交點為幾何體外接球的球心,結合三角形的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【詳解】設的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,則由球的性質(zhì)可知,直線與的交點為幾何體外接球的球心,取的中點,連接,由條件得,連接,因為,從而,連接,則為所得幾何體外接球的半徑,在直角中,由,可得,即外接球的半徑為,故所得幾何體外接球的表面積為.故答案為:.【點睛】本題主要考查了空間幾何體的結構特征,以及多面體的外接球的表面積的計算,其中解答中熟記空間幾何體的結構特征,求得外接球的半徑是解答的關鍵,著重考查了空間想象能力與運算求解能力,屬于中

13、檔試題.15【解析】根據(jù)向量的數(shù)量積的計算,以及向量的平方,簡單計算,可得結果.【詳解】由題可知:且由所以故答案為:【點睛】本題考查向量的坐標計算,主要考查計算,屬基礎題.16.【解析】求出切線的斜率,即可求出結論.【詳解】由圖可知直線過點,可求出直線的斜率,由導數(shù)的幾何意義可知,.故答案為:.【點睛】本題考查導數(shù)與曲線的切線的幾何意義,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)見解析,見解析;(2)見解析【解析】(1)把代入函數(shù)解析式,求出函數(shù)的導函數(shù)得到,再求出,利用直線方程的點斜式求函數(shù)在點處的切線方程;令,利用導數(shù)研究函數(shù)的單調(diào)性,可得當時,;

14、當時,;當時,(2)由題意,在上有唯一零點利用導數(shù)可得當時,在上單調(diào)遞減,當,時,在,上單調(diào)遞增,得到由在恒成立,且有唯一解,可得,得,即令,則,再由在上恒成立,得在上單調(diào)遞減,進一步得到在上單調(diào)遞增,由此可得【詳解】解:(1)當時,又,切線方程為,即;令,則,在上單調(diào)遞減又,當時,即;當時,即;當時,即證明:(2)由題意,而,令,解得,在上有唯一零點當時,在上單調(diào)遞減,當,時,在,上單調(diào)遞增在恒成立,且有唯一解,即,消去,得,即令,則,在上恒成立,在上單調(diào)遞減,又, ,在上單調(diào)遞增,【點睛】本題考查利用導數(shù)研究過曲線上某點處的切線方程,考查利用導數(shù)研究函數(shù)的單調(diào)性,考查邏輯思維能力與推理論證

15、能力,屬難題181【解析】整理已知利用復數(shù)的除法運算方式計算,再由求模公式得答案.【詳解】因為,即所以的模為1故答案為:1【點睛】本題考查復數(shù)的除法運算與求模,屬于基礎題.19(1)(2)證明見解析【解析】(1)求導,代入,求出在處的導數(shù)值及函數(shù)值,由此即可求得切線方程;(2)分類討論得出極大值即可判斷.【詳解】(1),當時,則在的切線方程為;(2)證明:令,解得或,當時,恒成立,此時函數(shù)在上單調(diào)遞減,函數(shù)無極值;當時,令,解得,令,解得或,函數(shù)在上單調(diào)遞增,在,上單調(diào)遞減,;當時,令,解得,令,解得或,函數(shù)在上單調(diào)遞增,在,上單調(diào)遞減,綜上,函數(shù)的極大值恒大于0.【點睛】本小題主要考查利用導

16、數(shù)求切線方程,考查利用導數(shù)研究函數(shù)的極值,考查分類討論的數(shù)學思想方法,屬于中檔題.20();()詳見解析.【解析】()依題意在上存在兩個極值點,等價于在有兩個不等實根,由參變分類可得,令,利用導數(shù)研究的單調(diào)性、極值,從而得到參數(shù)的取值范圍;()由題解得,要證成立,只需證:,即:,只需證:,設,即證:,再分別證明,即可;【詳解】解:()由題意可知,在上存在兩個極值點,等價于在有兩個不等實根,由可得,令,則,令,可得,當時,所以在上單調(diào)遞減,且當時,單調(diào)遞增;當時,單調(diào)遞減;所以是的極大值也是最大值,又當,當大于0趨向與0,要使在有兩個根,則,所以的取值范圍為;()由題解得,要證成立,只需證:即:

17、,只需證:設,即證:要證,只需證:令,則在上為增函數(shù),即成立;要證,只需證明:令,則在上為減函數(shù),即成立成立,所以成立.【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性、極值,利用導數(shù)證明不等式,屬于難題;21(1)x2=4y(2).【解析】試題解析:()設點P(x0,),由x2=2py(p0)得,y=,求導y=,因為直線PQ的斜率為1,所以=1且x0-2=0,解得p=2,所以拋物線C1的方程為x2=4y()因為點P處的切線方程為:y-=(x-x0),即2x0 x-2py-x02=0, OQ的方程為y=-x根據(jù)切線與圓切,得d=r,即,化簡得x04=4x02+4p2,由方程組,解得Q(,),所以|PQ|=1+k2|xP-xQ|=點F(0,)到切線PQ的距離是d=,所以S1=,S2=,而由x04=4x02+4p2知,4p2=x04-4x020,得|x0|2,所以=+12+1,當且僅當時取“=”號,即x02=4+2,此時,p=所以的最小值為2+1考點:求拋物線的方程,與拋物線有關的最值問題.22(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論