




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、Chapter 4 Solutions4.1(a)The pass band gain for this filter is unity. The gain drops to 0.707 of this value at 2400 Hz and 5200 Hz. Thus, the frequencies passed by the filter lie in the range 2400 to 5200 Hz.(b)The filter is a band pass filter.(c)The bandwidth is the range of frequencies for which t
2、he gain exceeds 0.707 of the maximum value, or 5200 2400 = 2800 Hz.4.2A low pass filter passes frequencies between DC and its cut-off frequency. The bandwidth is identical to the cut-off frequency. Thus, the cut-off frequency is 2 kHz.4.3The maximum pass band gain of the filter is 20 dB. The bandwid
3、th is defined as the range of frequencies for which the gain is no more than 3 dB below the pass band gain, or 17 dB. This gain occurs at the cut-off frequency of 700 Hz. For a high pass filter, the bandwidth is the range of frequencies between the cut-off frequency, 700 Hz, and the Nyquist frequenc
4、y (equal to half the sampling rate), 2 kHz. The bandwidth is 1300 Hz.4.4The low pass filter has a cut-off frequency of 150 Hz and bandwidth 150 Hz. The band pass filter has cut-off frequencies at 250 Hz and 350 Hz for a bandwidth of 100 Hz. The high pass filter has a cut-off frequency of 400 Hz and
5、a bandwidth of 100 Hz, which extends from its cut-off frequency to the Nyquist limit at half the sampling rate.4.5(a)The low pass filter output is on the left. The high pass filter output is on the right.nxn(b)An approximation to the original vowel signal can be found by adding the high and low pass
6、 waveforms together.4.6(a)linear(b)non-linear(c)non-linear(d)linear4.7Since the new input is shifted to the right by two positions from the original input, the new output is shifted to the right by two positions from the original output.ynn4.8(a)yn = 0.25yn1 + 0.75xn 0.25xn1(b)yn = yn1 xn 0.5xn14.9(
7、a)The system is non-recursive. b0 = b1 = b2 = 1/3(b)The system is recursive.a0 = 1, a1 = 0.2, b0 = 1(c)The system is recursive.a0 = 1, a1 = 0.5, b0 = 1, b1 = 0.44.10(a)n0123456789yn1.00.13.01.70.80.10.00.00.00.0ynn(b)n0123456789yn1.00.63.364.023.412.051.230.740.440.27ynn(c) n0123456789yn1.01.64.444.
8、103.293.663.292.962.672.40ynn(d) n0123456789yn0.50.51.52.51.50.50.00.00.00.0ynn4.11n0123456789xn1.001.0001.0001.0001.0000.0000.0000.0000.0000.000n0123456789yn1.000.7500.8130.7970.8010.200.0500.0130.0030.0014.12 n0123456789xn2.000.001.000.000.000.000.000.000.000.00n0123456789yn0.60.50.10.250.10.00.00
9、.00.00.0ynn4.13The overall input xn for any sampling instant is the sum of the inputs x1n and x2n. This overall input is applied to the difference equation in the normal way to obtain outputs.n0123456789xn0.000.8071.2001.0070.4000.5000.6000.7000.8000.900n0123456789yn0.000.8070.8370.4670.0530.320.375
10、0.4300.4850.544.14n0123456789xn0.000.3940.6320.7770.8650.9180.9500.9700.9820.989n0123456789yn0.000.3940.3170.5230.4460.5610.5020.5690.5270.5684.15xnyn+delay0.51.00.8delaydelayxn1xn34.16yn = 0.5yn2 + 1.2xn 0.6xn1 + 0.3xn24.17yn = 2.1xn1 1.5xn24.18wn = xn + 0.3wn1 0.1wn2yn = 0.8wn 0.4wn24.19The differ
11、ence equation for the first second-order section isy1n = 0.1xn + 0.2xn1 + 0.1xn2The difference equation for the second second-order section isyn = y1n + 0.3y1n2Substituting the first equation into the second givesyn = (0.1xn + 0.2xn1 + 0.1xn2) + 0.3(0.1xn2 + 0.2xn3 + 0.1xn4) = 0.1xn + 0.2xn1 + 0.07x
12、n2 + 0.06xn3 + 0.03xn44.20+0.3delaydelayxnyn0.50.24.21The direct form 2 equations are:wn = xn + 1.2wn1 0.5wn2yn = wn 0.2 wn14.22(a)yn = 0.14 yn1 0.38 yn2 + xnynxnwndelaydelay0.140.38+(b)wn = xn 0.14wn1 0.38wn2yn = wnNote that the difference equation diagram for this part is the same as that for part
13、 (a).ynxnwndelaydelay0.140.38+4.23The first ten samples of the impulse response are:n0123456789hn1.01.20.80.40.0 0.00.00.00.00.04.24From the figure, the filter has a finite impulse response. It may be described as a sum of impulse function as:hn = 0.5n + 0.4n1 + 0.3n2 + 0.2n2The difference equation
14、has the parallel form:yn = 0.5xn + 0.4xn1 + 0.3xn2 + 0.2xn34.25The impulse response is finite, with samples as listed in the table.n0123456hn1.0000.3000.0900.0270.0000.0000.000The impulse response samples for a FIR filter serve directly as bk coefficients, soyn = xn + 0.3xn1 + 0.09xn2 + 0.027xn3This
15、 result may also be seen by writing the impulse response in terms of impulse functions:hn = n + 0.3n1 + 0.09n2 + 0.027n34.26 n01234hn 1.00000.30000.24000.19200.1536n56789hn0.12290.09830.07860.06290.05034.27The impulse response may be found from the difference equation ashn = 0.5hn1 + n 0.8n1 The ste
16、p response may be found fromsn = 0.5sn1 + un 0.8un1 or by finding a cumulative sum of the impulse response samples.n0123456789hn1.001.3000.6500.3250.1630.0810.0410.0200.0100.005sn1.000.3000.3500.0250.1880.1060.1470.1270.1370.1324.28The difference equation for a five-term moving average filter isThe
17、impulse response,is plotted below.hnn4.29The impulse response belongs to a non-recursive filter because, after a finite number of samples, the output settles to zero permanently.4.30(a)The response to an impulse function is, by definition, the impulse response. Therefore, the answer to (a) is provid
18、ed in the question.(b)The signal xn consists of two impulse functions with different amplitudes and locations. The response to this input will be the same combination of impulse responses, that is,yn = 0.8hn + 0.5hn10.8hnn0.5hn1n0.8hn+0.5hn1nThe output samples are listed in the following table:n0123456789yn3.24.43.11.80.50.00.00.00.00.04.31The step response can be obtained from sn = un 0.5un1 0.7un2The first ten samples are:n0123456789sn1.000.500.200.200.200.200.200.200.200.204.32(a)The impulse respo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 特色小吃品牌區(qū)域代理銷售合同
- 韓國料理餐廳租賃經(jīng)營及特色菜品研發(fā)合同
- 生態(tài)農(nóng)業(yè)示范區(qū)場(chǎng)雙邊合作開發(fā)合同
- 弘揚(yáng)踐行活動(dòng)方案
- 項(xiàng)目施工合同管理
- 影樓旺季活動(dòng)方案
- 開平碉樓活動(dòng)方案
- 512護(hù)士節(jié)主題活動(dòng)方案
- 思南公館活動(dòng)方案
- 性別互換活動(dòng)方案
- 運(yùn)輸公司交通安全培訓(xùn)課件
- 2025年陜西省中考數(shù)學(xué)試題(解析版)
- 《康復(fù)治療學(xué)專業(yè)畢業(yè)實(shí)習(xí)》教學(xué)大綱
- 北師大版7年級(jí)數(shù)學(xué)下冊(cè)期末真題專項(xiàng)練習(xí) 03 計(jì)算題(含答案)
- 職業(yè)衛(wèi)生管理制度和操作規(guī)程標(biāo)準(zhǔn)版
- 小學(xué)信息技術(shù)四年級(jí)下冊(cè)教案(全冊(cè))
- 河道保潔船管理制度
- 【增程式電動(dòng)拖拉機(jī)驅(qū)動(dòng)系統(tǒng)總體設(shè)計(jì)方案計(jì)算1900字】
- 2025年重慶市中考物理試卷真題(含標(biāo)準(zhǔn)答案)
- 2025至2030中國云計(jì)算行業(yè)產(chǎn)業(yè)運(yùn)行態(tài)勢(shì)及投資規(guī)劃深度研究報(bào)告
- 高中家長會(huì) 共筑夢(mèng)想,攜手未來課件-高二下學(xué)期期末家長會(huì)
評(píng)論
0/150
提交評(píng)論