湖北省百校大聯(lián)盟2021-2022學(xué)年高考仿真卷數(shù)學(xué)試卷含解析_第1頁
湖北省百校大聯(lián)盟2021-2022學(xué)年高考仿真卷數(shù)學(xué)試卷含解析_第2頁
湖北省百校大聯(lián)盟2021-2022學(xué)年高考仿真卷數(shù)學(xué)試卷含解析_第3頁
湖北省百校大聯(lián)盟2021-2022學(xué)年高考仿真卷數(shù)學(xué)試卷含解析_第4頁
湖北省百校大聯(lián)盟2021-2022學(xué)年高考仿真卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1設(shè)為虛數(shù)單位,為復(fù)數(shù),若為實數(shù),則( )ABCD2已知圓與拋物線的準線相切,則的值為()A1B2CD43正三棱錐底

2、面邊長為3,側(cè)棱與底面成角,則正三棱錐的外接球的體積為( )ABCD4已知雙曲線的左、右焦點分別為,圓與雙曲線在第一象限內(nèi)的交點為M,若則該雙曲線的離心率為A2B3CD5已知函數(shù),若所有點,所構(gòu)成的平面區(qū)域面積為,則( )ABC1D6已知集合,則()ABCD7正項等比數(shù)列中,且與的等差中項為4,則的公比是 ( )A1B2CD8中國古建筑借助榫卯將木構(gòu)件連接起來,構(gòu)件的凸出部分叫榫頭,凹進部分叫卯眼,圖中木構(gòu)件右邊的小長方體是榫頭若如圖擺放的木構(gòu)件與某一帶卯眼的木構(gòu)件咬合成長方體,則咬合時帶卯眼的木構(gòu)件的俯視圖可以是ABCD9一個陶瓷圓盤的半徑為,中間有一個邊長為的正方形花紋,向盤中投入1000

3、粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計圓周率的值為(精確到0.001)( )A3.132B3.137C3.142D3.14710設(shè)等差數(shù)列的前項和為,若,則( )A21B22C11D1211在正方體中,分別為,的中點,則異面直線,所成角的余弦值為( )ABCD12已知點是拋物線的對稱軸與準線的交點,點為拋物線的焦點,點在拋物線上且滿足,若取得最大值時,點恰好在以為焦點的橢圓上,則橢圓的離心率為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13在中,內(nèi)角的對邊長分別為,已知,且,則_14若直線與直線交于點,則長度的最大值為_15若函數(shù)在區(qū)間上有且僅有一個零點,則實數(shù)

4、的取值范圍有_.16 “直線l1:與直線l2:平行”是“a2”的_條件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)設(shè)函數(shù),其中,為正實數(shù).(1)若的圖象總在函數(shù)的圖象的下方,求實數(shù)的取值范圍;(2)設(shè),證明:對任意,都有.18(12分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點, 是上異于,的點, .(1)證明:平面平面;(2)若點為半圓弧上的一個三等分點(靠近點)求二面角的余弦值.19(12分)如圖,在四邊形ABCD中,AB/CD,ABD=30,AB2CD2AD2

5、,DE平面ABCD,EF/BD,且BD2EF()求證:平面ADE平面BDEF;()若二面角CBFD的大小為60,求CF與平面ABCD所成角的正弦值20(12分)已知函數(shù),為的導(dǎo)數(shù),函數(shù)在處取得最小值(1)求證:;(2)若時,恒成立,求的取值范圍21(12分)已知(1)若的解集為,求的值;(2)若對任意,不等式恒成立,求實數(shù)的取值范圍22(10分)隨著電子閱讀的普及,傳統(tǒng)紙質(zhì)媒體遭受到了強烈的沖擊某雜志社近9年來的紙質(zhì)廣告收入如下表所示: 根據(jù)這9年的數(shù)據(jù),對和作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.243;根據(jù)后5年的數(shù)據(jù),對和作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.984.(

6、1)如果要用線性回歸方程預(yù)測該雜志社2019年的紙質(zhì)廣告收入,現(xiàn)在有兩個方案,方案一:選取這9年數(shù)據(jù)進行預(yù)測,方案二:選取后5年數(shù)據(jù)進行預(yù)測從實際生活背景以及線性相關(guān)性檢驗的角度分析,你覺得哪個方案更合適?附:相關(guān)性檢驗的臨界值表:(2)某購物網(wǎng)站同時銷售某本暢銷書籍的紙質(zhì)版本和電子書,據(jù)統(tǒng)計,在該網(wǎng)站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質(zhì)版本和電子書同時購買的讀者比例為,現(xiàn)用此統(tǒng)計結(jié)果作為概率,若從上述讀者中隨機調(diào)查了3位,求購買電子書人數(shù)多于只購買紙質(zhì)版本人數(shù)的概率參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。

7、1B【解析】可設(shè),將化簡,得到,由復(fù)數(shù)為實數(shù),可得,解方程即可求解【詳解】設(shè),則.由題意有,所以.故選:B【點睛】本題考查復(fù)數(shù)的模長、除法運算,由復(fù)數(shù)的類型求解對應(yīng)參數(shù),屬于基礎(chǔ)題2B【解析】因為圓與拋物線的準線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于 半徑,可知的值為2,選B.【詳解】請在此輸入詳解!3D【解析】由側(cè)棱與底面所成角及底面邊長求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側(cè)棱與底面所成的角,即60,由底面邊長為3得,正三棱錐外接球球心必在上,設(shè)球半徑為,則由得,解得,故選:D【點睛】本

8、題考查球體積,考查正三棱錐與外接球的關(guān)系掌握正棱錐性質(zhì)是解題關(guān)鍵4D【解析】本題首先可以通過題意畫出圖像并過點作垂線交于點,然后通過圓與雙曲線的相關(guān)性質(zhì)判斷出三角形的形狀并求出高的長度,的長度即點縱坐標,然后將點縱坐標帶入圓的方程即可得出點坐標,最后將點坐標帶入雙曲線方程即可得出結(jié)果?!驹斀狻扛鶕?jù)題意可畫出以上圖像,過點作垂線并交于點,因為,在雙曲線上,所以根據(jù)雙曲線性質(zhì)可知,即,因為圓的半徑為,是圓的半徑,所以,因為,所以,三角形是直角三角形,因為,所以,即點縱坐標為,將點縱坐標帶入圓的方程中可得,解得,將點坐標帶入雙曲線中可得,化簡得,故選D?!军c睛】本題考查了圓錐曲線的相關(guān)性質(zhì),主要考察

9、了圓與雙曲線的相關(guān)性質(zhì),考查了圓與雙曲線的綜合應(yīng)用,考查了數(shù)形結(jié)合思想,體現(xiàn)了綜合性,提高了學(xué)生的邏輯思維能力,是難題。5D【解析】依題意,可得,在上單調(diào)遞增,于是可得在上的值域為,繼而可得,解之即可.【詳解】解:,因為,所以,在上單調(diào)遞增,則在上的值域為,因為所有點所構(gòu)成的平面區(qū)域面積為,所以,解得,故選:D.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,理解題意,得到是關(guān)鍵,考查運算能力,屬于中檔題6A【解析】根據(jù)對數(shù)性質(zhì)可知,再根據(jù)集合的交集運算即可求解.【詳解】,集合,由交集運算可得.故選:A.【點睛】本題考查由對數(shù)的性質(zhì)比較大小,集合交集的簡單運算,屬于基礎(chǔ)題.7D【解析】設(shè)等比數(shù)列的公

10、比為q,運用等比數(shù)列的性質(zhì)和通項公式,以及等差數(shù)列的中項性質(zhì),解方程可得公比q【詳解】由題意,正項等比數(shù)列中,可得,即,與的等差中項為4,即,設(shè)公比為q,則,則負的舍去,故選D【點睛】本題主要考查了等差數(shù)列的中項性質(zhì)和等比數(shù)列的通項公式的應(yīng)用,其中解答中熟記等比數(shù)列通項公式,合理利用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了方程思想和運算能力,屬于基礎(chǔ)題8A【解析】詳解:由題意知,題干中所給的是榫頭,是凸出的幾何體,求得是卯眼的俯視圖,卯眼是凹進去的,即俯視圖中應(yīng)有一不可見的長方形,且俯視圖應(yīng)為對稱圖形故俯視圖為故選A.點睛:本題主要考查空間幾何體的三視圖,考查學(xué)生的空間想象能力,屬于基礎(chǔ)題。9B

11、【解析】結(jié)合隨機模擬概念和幾何概型公式計算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點睛】本題考查隨機模擬的概念和幾何概型,屬于基礎(chǔ)題10A【解析】由題意知成等差數(shù)列,結(jié)合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以 ,即,解得.故選:A.【點睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項.對于等差數(shù)列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計算量大大減少.11D【解析】連接,因為,所以為異面直線與所成的角(或補角),不妨設(shè)正方體的棱長為2,取的中點為,連接,在等腰中,求

12、出,在利用二倍角公式,求出,即可得出答案.【詳解】連接,因為,所以為異面直線與所成的角(或補角),不妨設(shè)正方體的棱長為2,則,在等腰中,取的中點為,連接,則,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【點睛】本題考查空間異面直線的夾角余弦值,利用了正方體的性質(zhì)和二倍角公式,還考查空間思維和計算能力.12B【解析】設(shè),利用兩點間的距離公式求出的表達式,結(jié)合基本不等式的性質(zhì)求出的最大值時的點坐標,結(jié)合橢圓的定義以及橢圓的離心率公式求解即可.【詳解】設(shè),因為是拋物線的對稱軸與準線的交點,點為拋物線的焦點,所以,則,當時,當時,當且僅當時取等號,此時,點在以為焦點的橢圓上,由橢圓的定義得,

13、所以橢圓的離心率,故選B.【點睛】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:直接求出,從而求出;構(gòu)造的齊次式,求出;采用離心率的定義以及圓錐曲線的定義來求解二、填空題:本題共4小題,每小題5分,共20分。134【解析】根據(jù)正弦定理與余弦定理可得:,即故答案為414【解析】根據(jù)題意可知,直線與直線分別過定點,且這兩條直線互相垂直,由此可知,其交點在以為直徑的圓上,結(jié)合圖形求出線段的最大值即可.【詳解】由題可知,直線可化為,所以其過定點,直線可化為,所以其過定點,且滿足,所以直線與直線互相垂直,其交點在以為直徑的圓上,作

14、圖如下:結(jié)合圖形可知,線段的最大值為,因為為線段的中點,所以由中點坐標公式可得,所以線段的最大值為.故答案為:【點睛】本題考查過交點的直線系方程、動點的軌跡問題及點與圓的位置關(guān)系;考查數(shù)形結(jié)合思想和運算求解能力;根據(jù)圓的定義得到交點在以為直徑的圓上是求解本題的關(guān)鍵;屬于中檔題.15或【解析】函數(shù)的零點方程的根,求出方程的兩根為,從而可得或,即或.【詳解】函數(shù)在區(qū)間的零點方程在區(qū)間的根,所以,解得:,因為函數(shù)在區(qū)間上有且僅有一個零點,所以或,即或.【點睛】本題考查函數(shù)的零點與方程根的關(guān)系,在求含絕對值方程時,要注意對絕對值內(nèi)數(shù)的正負進行討論.16必要不充分【解析】先求解直線l1與直線l2平行的等

15、價條件,然后進行判斷.【詳解】“直線l1:與直線l2:平行”等價于a2,故“直線l1:與直線l2:平行”是“a2”的必要不充分條件故答案為:必要不充分.【點睛】本題主要考查充分必要條件的判定,把已知條件進行等價轉(zhuǎn)化是求解這類問題的關(guān)鍵,側(cè)重考查邏輯推理的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1) (2)證明見解析【解析】(1)據(jù)題意可得在區(qū)間上恒成立,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,從而求出滿足不等式的的取值范圍;(2)不等式整理為,由(1)可知當時,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性從而證明在區(qū)間上成立,從而證明對任意,都有.【詳解】(1)解:因為函數(shù)的圖象恒在的圖象

16、的下方,所以在區(qū)間上恒成立.設(shè),其中,所以,其中,.當,即時,所以函數(shù)在上單調(diào)遞增,故成立,滿足題意.當,即時,設(shè),則圖象的對稱軸,所以在上存在唯一實根,設(shè)為,則,所以在上單調(diào)遞減,此時,不合題意.綜上可得,實數(shù)的取值范圍是.(2)證明:由題意得,因為當時,所以.令,則,所以在上單調(diào)遞增,即,所以,從而.由(1)知當時,在上恒成立,整理得.令,則要證,只需證.因為,所以在上單調(diào)遞增,所以,即在上恒成立.綜上可得,對任意,都有成立.【點睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的作用,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性與求函數(shù)最值,利用導(dǎo)數(shù)證明不等式,屬于難題.18(1)詳見解析;(2).【解析】(1)由直徑所對的圓周角

17、為,可知,通過計算,利用勾股定理的逆定理可以判斷出為直角三角形,所以有.由已知可以證明出,這樣利用線面垂直的判定定理可以證明平面,利用面面垂直的判定定理可以證明出平面平面;(2)以為坐標原點,分別以垂直于平面向上的方向、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,求出相應(yīng)點的坐標,求出平面的一個法向量和平面的法向量,利用空間向量數(shù)量積運算公式,可以求出二面角的余弦值.【詳解】解:(1)證明:因為半圓弧上的一點,所以.在中,分別為的中點,所以,且.于是在中, ,所以為直角三角形,且. 因為,,所以. 因為, 所以平面.又平面,所以平面平面. (2)由已知,以為坐標原點,分別

18、以垂直于、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,, ,. 設(shè)平面的一個法向量為,則即,取,得. 設(shè)平面的法向量,則即,取,得. 所以, 又二面角為銳角,所以二面角的余弦值為. 【點睛】本題考查了利用線面垂直判定面面垂直、利用空間向量數(shù)量積求二面角的余弦值問題.19(1)見解析(2)【解析】分析:(1)根據(jù)面面垂直的判定定理即可證明平面ADE平面BDEF;(2)建立空間直角坐標系,利用空間向量法即可求CF與平面ABCD所成角的正弦值;也可以應(yīng)用常規(guī)法,作出線面角,放在三角形當中來求解.詳解:()在ABD中,ABD30,由AO2AB2+BD22ABBDcos30,解

19、得BD,所以AB2+BD2=AB2,根據(jù)勾股定理得ADB90ADBD.又因為DE平面ABCD,AD平面ABCD,ADDE.又因為BDDED,所以AD平面BDEF,又AD平面ABCD,平面ADE平面BDEF, ()方法一: 如圖,由已知可得,則,則三角形BCD為銳角為30的等腰三角形. 則.過點C做,交DB、AB于點G,H,則點G為點F在面ABCD上的投影.連接FG,則,DE平面ABCD,則平面.過G做于點I,則BF平面,即角為二面角CBFD的平面角,則60.則,則.在直角梯形BDEF中,G為BD中點,設(shè) ,則,則. ,則,即CF與平面ABCD所成角的正弦值為()方法二:可知DA、DB、DE兩兩

20、垂直,以D為原點,建立如圖所示的空間直角坐標系D-xyz.設(shè)DEh,則D(0,0,0),B(0,0),C(,h).,. 設(shè)平面BCF的法向量為m(x,y,z),則所以取x=,所以m(,-1,),取平面BDEF的法向量為n(1,0,0),由,解得,則,又,則,設(shè)CF與平面ABCD所成角為,則sin=.故直線CF與平面ABCD所成角的正弦值為 點睛:該題考查的是立體幾何的有關(guān)問題,涉及到的知識點有面面垂直的判定,線面角的正弦值,在求解的過程中,需要把握面面垂直的判定定理的內(nèi)容,要明白垂直關(guān)系直角的轉(zhuǎn)化,在求線面角的有關(guān)量的時候,有兩種方法,可以應(yīng)用常規(guī)法,也可以應(yīng)用向量法.20(1)見解析; (2

21、).【解析】(1)對求導(dǎo),令,求導(dǎo)研究單調(diào)性,分析可得存在使得,即,即得證;(2)分,兩種情況討論,當時,轉(zhuǎn)化利用均值不等式即得證;當,有兩個不同的零點,分析可得的最小值為,分,討論即得解.【詳解】(1)由題意,令,則,知為的增函數(shù),因為,所以,存在使得,即所以,當時,為減函數(shù),當時,為增函數(shù),故當時,取得最小值,也就是取得最小值故,于是有,即,所以有,證畢(2)由(1)知,的最小值為,當,即時,為的增函數(shù),所以,由(1)中,得,即故滿足題意當,即時,有兩個不同的零點,且,即,若時,為減函數(shù),(*)若時,為增函數(shù),所以的最小值為注意到時,且此時,()當時,所以,即,又,而,所以,即由于在下,恒

22、有,所以()當時,所以,所以由(*)知時,為減函數(shù),所以,不滿足時,恒成立,故舍去故滿足條件綜上所述:的取值范圍是【點睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合,考查了利用導(dǎo)數(shù)研究函數(shù)的最值和不等式的恒成立問題,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,分類討論,數(shù)學(xué)運算能力,屬于較難題.21(1);(2)【解析】(1)利用兩邊平方法解含有絕對值的不等式,再根據(jù)根與系數(shù)的關(guān)系求出的值;(2)利用絕對值不等式求出的最小值,把不等式化為只含有的不等式,求出不等式解集即可【詳解】(1)不等式,即兩邊平方整理得由題意知和是方程的兩個實數(shù)根即,解得(2)因為所以要使不等式恒成立,只需當時,解得,即;當時,解得,即;綜上所述,的取值范圍是【點睛】本題考查了含有絕對值的不等式解法與應(yīng)用問題,也考查了分類討論思想,是中檔題22(1)選取方案二更合適;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論