版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知雙曲線的實(shí)軸長為,離心率為,、分別為雙曲線的左、右焦點(diǎn),點(diǎn)在雙曲線上運(yùn)動(dòng),若為銳角三角形,則的取值范圍是( )ABCD2已知復(fù)數(shù)z滿足iz2+i,則z的共軛復(fù)數(shù)是()A12iB1
2、+2iC12iD1+2i3復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限4已知命題若,則,則下列說法正確的是( )A命題是真命題B命題的逆命題是真命題C命題的否命題是“若,則”D命題的逆否命題是“若,則”5已知與函數(shù)和都相切,則不等式組所確定的平面區(qū)域在內(nèi)的面積為( )ABCD6下列說法正確的是( )A“若,則”的否命題是“若,則”B在中,“”是“”成立的必要不充分條件C“若,則”是真命題D存在,使得成立7已知,那么是的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件8復(fù)數(shù)的虛部為()A1B3C1D29已知m,n是兩條不同的直線,是
3、兩個(gè)不同的平面,給出四個(gè)命題:若,則;若,則;若,則;若,則其中正確的是( )ABCD10已知函數(shù),若對(duì)任意的,存在實(shí)數(shù)滿足,使得,則的最大值是( )A3B2C4D511定義在上的偶函數(shù),對(duì),且,有成立,已知,則,的大小關(guān)系為( )ABCD12已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時(shí),則( )A2BC1D二、填空題:本題共4小題,每小題5分,共20分。13設(shè)P為有公共焦點(diǎn)的橢圓與雙曲線的一個(gè)交點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,若,則_.14已知等比數(shù)列的各項(xiàng)都是正數(shù),且成等差數(shù)列,則=_15高三(1)班共有56人,學(xué)號(hào)依次為1,2,3,56,現(xiàn)用系統(tǒng)抽樣的辦法抽取一個(gè)容量為4的樣本,
4、已知學(xué)號(hào)為6,34,48的同學(xué)在樣本中,那么還有一個(gè)同學(xué)的學(xué)號(hào)應(yīng)為 16如圖,直線是曲線在處的切線,則_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),將曲線經(jīng)過伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;(2)已知點(diǎn)是曲線上的任意一點(diǎn),又直線上有兩點(diǎn)和,且,又點(diǎn)的極角為,點(diǎn)的極角為銳角.求:點(diǎn)的極角;面積的取值范圍.18(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)的值域;(2)的角的對(duì)邊分別為且,求邊上的高的最大值.19(12分)
5、已知曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).(1)求和的普通方程;(2)過坐標(biāo)原點(diǎn)作直線交曲線于點(diǎn)(異于),交曲線于點(diǎn),求的最小值.20(12分)已知函數(shù),其中,.(1)函數(shù)的圖象能否與x軸相切?若能,求出實(shí)數(shù)a;若不能,請(qǐng)說明理由.(2)若在處取得極大值,求實(shí)數(shù)a的取值范圍.21(12分)已知函數(shù)(1)解不等式;(2)若函數(shù)存在零點(diǎn),求的求值范圍22(10分)已知橢圓的焦距為2,且過點(diǎn)(1)求橢圓的方程;(2)設(shè)為的左焦點(diǎn),點(diǎn)為直線上任意一點(diǎn),過點(diǎn)作的垂線交于兩點(diǎn),()證明:平分線段(其中為坐標(biāo)原點(diǎn));()當(dāng)取最小值時(shí),求點(diǎn)的坐標(biāo)參考答案一、選擇題:本題共12小題,每小題5分
6、,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1A【解析】由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結(jié)合即可解決.【詳解】由已知可得,所以,從而雙曲線方程為,不妨設(shè)點(diǎn)在雙曲線右支上運(yùn)動(dòng),則,當(dāng)時(shí),此時(shí),所以,所以;當(dāng)軸時(shí),所以,又為銳角三角形,所以.故選:A.【點(diǎn)睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,本題的關(guān)鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.2D【解析】兩邊同乘-i,化簡即可得出答案【詳解】iz2+i兩邊同乘-i得z=1-2i,共軛復(fù)數(shù)為1+2i,選D.【點(diǎn)睛】的共軛復(fù)數(shù)為3B【解析】利用復(fù)數(shù)的四則運(yùn)算以及幾何意義即可求解.【
7、詳解】解:,則復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為:,位于第二象限.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算以及復(fù)數(shù)的幾何意義,屬于基礎(chǔ)題.4B【解析】解不等式,可判斷A選項(xiàng)的正誤;寫出原命題的逆命題并判斷其真假,可判斷B選項(xiàng)的正誤;利用原命題與否命題、逆否命題的關(guān)系可判斷C、D選項(xiàng)的正誤.綜合可得出結(jié)論.【詳解】解不等式,解得,則命題為假命題,A選項(xiàng)錯(cuò)誤;命題的逆命題是“若,則”,該命題為真命題,B選項(xiàng)正確;命題的否命題是“若,則”,C選項(xiàng)錯(cuò)誤;命題的逆否命題是“若,則”,D選項(xiàng)錯(cuò)誤故選:B【點(diǎn)睛】本題考查四種命題的關(guān)系,考查推理能力,屬于基礎(chǔ)題.5B【解析】根據(jù)直線與和都相切,
8、求得的值,由此畫出不等式組所表示的平面區(qū)域以及圓,由此求得正確選項(xiàng).【詳解】.設(shè)直線與相切于點(diǎn),斜率為,所以切線方程為,化簡得.令,解得,所以切線方程為,化簡得.由對(duì)比系數(shù)得,化簡得.構(gòu)造函數(shù),所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程有唯一解.所以切線方程為.即.不等式組即,畫出其對(duì)應(yīng)的區(qū)域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區(qū)域在內(nèi)的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B【點(diǎn)睛】本小題主要考查根據(jù)公共切線求參數(shù),考查不等式組表示區(qū)
9、域的畫法,考查圓的方程,考查兩條直線夾角的計(jì)算,考查扇形面積公式,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查分析思考與解決問題的能力,屬于難題.6C【解析】A:否命題既否條件又否結(jié)論,故A錯(cuò).B:由正弦定理和邊角關(guān)系可判斷B錯(cuò).C:可判斷其逆否命題的真假,C正確.D:根據(jù)冪函數(shù)的性質(zhì)判斷D錯(cuò).【詳解】解:A:“若,則”的否命題是“若,則”,故 A錯(cuò).B:在中,故“”是“”成立的必要充分條件,故B錯(cuò).C:“若,則”“若,則”,故C正確.D:由冪函數(shù)在遞減,故D錯(cuò).故選:C【點(diǎn)睛】考查判斷命題的真假,是基礎(chǔ)題.7B【解析】由,可得,解出即可判斷出結(jié)論【詳解】解:因?yàn)椋?,解得是的必要不充分條件故選:【點(diǎn)睛】
10、本題考查了向量數(shù)量積運(yùn)算性質(zhì)、三角函數(shù)求值、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題8B【解析】對(duì)復(fù)數(shù)進(jìn)行化簡計(jì)算,得到答案.【詳解】所以的虛部為故選B項(xiàng).【點(diǎn)睛】本題考查復(fù)數(shù)的計(jì)算,虛部的概念,屬于簡單題.9D【解析】根據(jù)面面垂直的判定定理可判斷;根據(jù)空間面面平行的判定定理可判斷;根據(jù)線面平行的判定定理可判斷;根據(jù)面面垂直的判定定理可判斷.【詳解】對(duì)于,若,兩平面相交,但不一定垂直,故錯(cuò)誤;對(duì)于,若,則,故正確;對(duì)于,若,當(dāng),則與不平行,故錯(cuò)誤;對(duì)于,若,則,故正確;故選:D【點(diǎn)睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎(chǔ)題.10A【解
11、析】根據(jù)條件將問題轉(zhuǎn)化為,對(duì)于恒成立,然后構(gòu)造函數(shù),然后求出的范圍,進(jìn)一步得到的最大值.【詳解】,對(duì)任意的,存在實(shí)數(shù)滿足,使得, 易得,即恒成立,對(duì)于恒成立,設(shè),則,令,在恒成立,故存在,使得,即,當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.,將代入得:,且,故選:A【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,零點(diǎn)存在定理和不等式恒成立問題,考查了轉(zhuǎn)化思想,屬于難題.11A【解析】根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性即可判斷.【詳解】解:對(duì),且,有在上遞增因?yàn)槎x在上的偶函數(shù)所以在上遞減又因?yàn)?,所以故選:A【點(diǎn)睛】考查偶函數(shù)的性質(zhì)以及單調(diào)性的應(yīng)用,基礎(chǔ)題.12D【解析】說明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再
12、結(jié)合奇偶性計(jì)算函數(shù)值【詳解】由知函數(shù)的周期為4,又是奇函數(shù),又,故選:D【點(diǎn)睛】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎(chǔ)二、填空題:本題共4小題,每小題5分,共20分。13【解析】設(shè)根據(jù)橢圓的幾何性質(zhì)可得,根據(jù)雙曲線的幾何性質(zhì)可得,,即故答案為14【解析】根據(jù)等差中項(xiàng)性質(zhì),結(jié)合等比數(shù)列通項(xiàng)公式即可求得公比;代入表達(dá)式,結(jié)合對(duì)數(shù)式的化簡即可求解.【詳解】等比數(shù)列的各項(xiàng)都是正數(shù),且成等差數(shù)列,則,由等比數(shù)列通項(xiàng)公式可知,所以,解得或(舍),所以由對(duì)數(shù)式運(yùn)算性質(zhì)可得,故答案為:.【點(diǎn)睛】本題考查了等差數(shù)列通項(xiàng)公式的簡單應(yīng)用,等比數(shù)列通項(xiàng)公式的用法,對(duì)數(shù)式的化簡運(yùn)算,屬于中檔題
13、.1520【解析】根據(jù)系統(tǒng)抽樣的定義將56人按順序分成4組,每組14人,則1至14號(hào)為第一組,15至28號(hào)為第二組,29號(hào)至42號(hào)為第三組,43號(hào)至56號(hào)為第四組.而學(xué)號(hào)6,34,48分別是第一、三、四組的學(xué)號(hào),所以還有一個(gè)同學(xué)應(yīng)該是15+6-1=20號(hào),故答案為20.16.【解析】求出切線的斜率,即可求出結(jié)論.【詳解】由圖可知直線過點(diǎn),可求出直線的斜率,由導(dǎo)數(shù)的幾何意義可知,.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)與曲線的切線的幾何意義,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)曲線為圓心在原點(diǎn),半徑為2的圓.的極坐標(biāo)方程為(2)【解析】(1)求得曲線伸縮
14、變換后所得的參數(shù)方程,消參后求得的普通方程,判斷出對(duì)應(yīng)的曲線,并將的普通方程轉(zhuǎn)化為極坐標(biāo)方程.(2)將的極角代入直線的極坐標(biāo)方程,由此求得點(diǎn)的極徑,判斷出為等腰三角形,求得直線的普通方程,由此求得,進(jìn)而求得,從而求得點(diǎn)的極角.解法一:利用曲線的參數(shù)方程,求得曲線上的點(diǎn)到直線的距離的表達(dá)式,結(jié)合三角函數(shù)的知識(shí)求得的最小值和最大值,由此求得面積的取值范圍.解法二:根據(jù)曲線表示的曲線,利用圓的幾何性質(zhì)求得圓上的點(diǎn)到直線的距離的最大值和最小值,進(jìn)而求得面積的取值范圍.【詳解】(1)因?yàn)榍€的參數(shù)方程為(為參數(shù)),因?yàn)閯t曲線的參數(shù)方程所以的普通方程為.所以曲線為圓心在原點(diǎn),半徑為2的圓.所以的極坐標(biāo)方程
15、為,即.(2)點(diǎn)的極角為,代入直線的極坐標(biāo)方程得點(diǎn)極徑為,且,所以為等腰三角形,又直線的普通方程為,又點(diǎn)的極角為銳角,所以,所以,所以點(diǎn)的極角為.解法1:直線的普通方程為.曲線上的點(diǎn)到直線的距離.當(dāng),即()時(shí),取到最小值為.當(dāng),即()時(shí),取到最大值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.解法2:直線的普通方程為.因?yàn)閳A的半徑為2,且圓心到直線的距離,因?yàn)椋詧A與直線相離.所以圓上的點(diǎn)到直線的距離最大值為,最小值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.【點(diǎn)睛】本小題考查坐標(biāo)變換,極徑與極角;直線,圓的極坐標(biāo)方程,圓的參數(shù)方程,直線的極坐標(biāo)方程與普通方
16、程,點(diǎn)到直線的距離等.考查數(shù)學(xué)運(yùn)算能力,包括運(yùn)算原理的理解與應(yīng)用、運(yùn)算方法的選擇與優(yōu)化、運(yùn)算結(jié)果的檢驗(yàn)與改進(jìn)等.也兼考了數(shù)學(xué)抽象素養(yǎng)、邏輯推理、數(shù)學(xué)運(yùn)算、直觀想象等核心素養(yǎng).18(1).(2)【解析】(1)由題意利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的定義域和值域,得出結(jié)論.(2)由題意利用余弦定理三角形的面積公式基本不等式求得的最大值,可得邊上的高的最大值.【詳解】解:(1)函數(shù),當(dāng)時(shí),.(2)中,.由余弦定理可得,當(dāng)且僅當(dāng)時(shí),取等號(hào),即的最大值為3.再根據(jù),故當(dāng)取得最大值3時(shí),取得最大值為.【點(diǎn)睛】本題考查降冪公式、兩角和的正弦公式,考查正弦函數(shù)的性質(zhì),余弦定理,三角形面積公式,
17、所用公式較多,選用恰當(dāng)?shù)墓绞墙忸}關(guān)鍵,本題屬于中檔題19(1)曲線的普通方程為:;曲線的普通方程為:(2)【解析】(1)消去曲線參數(shù)方程中的參數(shù),求得和的普通方程.(2)設(shè)出過原點(diǎn)的直線的極坐標(biāo)方程,代入曲線的極坐標(biāo)方程,求得的表達(dá)式,結(jié)合三角函數(shù)值域的求法,求得的最小值.【詳解】(1)曲線的普通方程為:;曲線的普通方程為:.(2)設(shè)過原點(diǎn)的直線的極坐標(biāo)方程為;由得,所以曲線的極坐標(biāo)方程為在曲線中,.由得曲線的極坐標(biāo)方程為,所以而到直線與曲線的交點(diǎn)的距離為,因此,即的最小值為.【點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程,考查直角坐標(biāo)方程化為極坐標(biāo)方程,考查極坐標(biāo)系下距離的有關(guān)計(jì)算,屬于中檔題
18、.20 (1) 答案見解析(2) 【解析】(1)假設(shè)函數(shù)的圖象與x軸相切于,根據(jù)相切可得方程組,看方程是否有解即可;(2)求出的導(dǎo)數(shù),設(shè)(),根據(jù)函數(shù)的單調(diào)性及在處取得極大值求出a的范圍即可.【詳解】(1)函數(shù)的圖象不能與x軸相切,理由若下:.假設(shè)函數(shù)的圖象與x軸相切于則即顯然,代入中得,無實(shí)數(shù)解.故函數(shù)的圖象不能與x軸相切.(2)(),設(shè)(), 恒大于零.在上單調(diào)遞增.又,存在唯一,使,且時(shí),時(shí),當(dāng)時(shí),恒成立,在單調(diào)遞增,無極值,不合題意.當(dāng)時(shí),可得當(dāng)時(shí),當(dāng)時(shí),.所以在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,所以在處取得極小值,不合題意.當(dāng)時(shí),可得當(dāng)時(shí),當(dāng)時(shí),.所以在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,所以在處取得極大值,符合題意.此時(shí)由得即,綜上可知,實(shí)數(shù)a的取值范圍為.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題21(1)或 ;(2)【解析】(1)通過討論的范圍,將絕對(duì)值符號(hào)去掉,轉(zhuǎn)化為求不等式組的解集,之后取并集,得到原不等式的解集;(2)將函數(shù)零點(diǎn)問題轉(zhuǎn)化為曲線交點(diǎn)問題解決
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣播電視臺(tái)衛(wèi)生清潔承諾書
- 旅游資源資產(chǎn)評(píng)估與轉(zhuǎn)讓指南
- 旅游景點(diǎn)開發(fā)臨時(shí)圍墻施工協(xié)議
- 咖啡連鎖店財(cái)務(wù)主管招聘合同
- 摩托車交易協(xié)議范本
- 農(nóng)藥城地下停車位租賃合同
- 村委會(huì)農(nóng)村電商產(chǎn)業(yè)園合同
- 商場消防設(shè)施改造合同范本
- 2025關(guān)于新勞動(dòng)合同范本全文下載
- 物流公司賬款核對(duì)指南
- 7.4 等差數(shù)列與等比數(shù)列的應(yīng)用(課件)-【中職專用】高二數(shù)學(xué)(高教版2021·拓展模塊一下冊)
- TDT 1015.2-2024 地籍?dāng)?shù)據(jù)庫 第2部分:自然資源(正式版)
- 關(guān)于大數(shù)據(jù)的職業(yè)生涯規(guī)劃書課件
- 部編版高中語文必修上冊第二單元測試題及答案
- 電子化文件與信息管理制度
- 2024年高考地理試卷(浙江)(1月)(解析卷)
- 心理健康講座(課件)-小學(xué)生心理健康
- 《腸造口并發(fā)癥的分型與分級(jí)標(biāo)準(zhǔn)(2023版)》解讀
- 名畫中的瘟疫史智慧樹知到期末考試答案章節(jié)答案2024年上海健康醫(yī)學(xué)院
- 《跟上兔子》繪本三年級(jí)第1季One-Day教學(xué)課件
- 家長會(huì)課件:小學(xué)三年級(jí)家長會(huì) 課件
評(píng)論
0/150
提交評(píng)論