版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項1考生要認(rèn)真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1甲乙兩人有三個不同的學(xué)習(xí)小組, , 可以參加,若每人必須參加并且僅能參加一個學(xué)習(xí)小組,則兩人參加同一個小組的概率為( )A B C D2不等式的解集記為,有下面四個命題:;.其中的真命題是( )ABCD3已知正四面體的內(nèi)切球體積為v,外
2、接球的體積為V,則( )A4B8C9D274關(guān)于函數(shù),有下述三個結(jié)論:函數(shù)的一個周期為;函數(shù)在上單調(diào)遞增;函數(shù)的值域為.其中所有正確結(jié)論的編號是( )ABCD5若的二項展開式中的系數(shù)是40,則正整數(shù)的值為( )A4B5C6D76給出下列三個命題:“”的否定;在中,“”是“”的充要條件;將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象其中假命題的個數(shù)是( )A0B1C2D37已知函數(shù)是定義域為的偶函數(shù),且滿足,當(dāng)時,則函數(shù)在區(qū)間上零點的個數(shù)為( )A9B10C18D208若,則, , , 的大小關(guān)系為( )ABCD9已知直線是曲線的切線,則( )A或1B或2C或D或110音樂,是用聲音來展現(xiàn)美,給
3、人以聽覺上的享受,熔鑄人們的美學(xué)趣味著名數(shù)學(xué)家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學(xué)表達(dá)式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項是基本音,其余的為泛音由樂聲的數(shù)學(xué)表達(dá)式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是( )ABCD11在天文學(xué)中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是26.7,天狼星的星等是1.45,則太陽與天狼星的亮度的比值為( )A1010.1B10.1Clg10.1D1010.112我國古代數(shù)學(xué)著作九章算術(shù)有
4、如下問題:“今有蒲生一日,長三尺莞生一日,長一尺蒲生日自半,莞生日自倍.問幾何日而長倍?”意思是:“今有蒲草第天長高尺,蕪草第天長高尺以后,蒲草每天長高前一天的一半,蕪草每天長高前一天的倍.問第幾天莞草是蒲草的二倍?”你認(rèn)為莞草是蒲草的二倍長所需要的天數(shù)是( )(結(jié)果采取“只入不舍”的原則取整數(shù),相關(guān)數(shù)據(jù):,)ABCD二、填空題:本題共4小題,每小題5分,共20分。13函數(shù)的極大值為_.14已知四棱錐,底面四邊形為正方形,四棱錐的體積為,在該四棱錐內(nèi)放置一球,則球體積的最大值為_15在中,角、所對的邊分別為、,若,則的取值范圍是_16二項式的展開式中所有項的二項式系數(shù)之和是64,則展開式中的常
5、數(shù)項為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點.(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關(guān)系,并給出證明.18(12分)如圖所示,已知平面,為等邊三角形,為邊上的中點,且.()求證:面;()求證:平面平面;()求該幾何體的體積19(12分)如圖,在中,角的對邊分別為,且滿足,線段的中點為.()求角的大??;()已知,求的大小.20(12分)在以ABCDEF為
6、頂點的五面體中,底面ABCD為菱形,ABC120,ABAEED2EF,EFAB,點G為CD中點,平面EAD平面ABCD.(1)證明:BDEG;(2)若三棱錐,求菱形ABCD的邊長.21(12分)如圖,已知拋物線:與圓: ()相交于, , ,四個點,(1)求的取值范圍;(2)設(shè)四邊形的面積為,當(dāng)最大時,求直線與直線的交點的坐標(biāo).22(10分)已知拋物線,焦點為,直線交拋物線于兩點,交拋物線的準(zhǔn)線于點,如圖所示,當(dāng)直線經(jīng)過焦點時,點恰好是的中點,且.(1)求拋物線的方程;(2)點是原點,設(shè)直線的斜率分別是,當(dāng)直線的縱截距為1時,有數(shù)列滿足,設(shè)數(shù)列的前n項和為,已知存在正整數(shù)使得,求m的值.參考答案
7、一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】依題意,基本事件的總數(shù)有種,兩個人參加同一個小組,方法數(shù)有種,故概率為.2A【解析】作出不等式組表示的可行域,然后對四個選項一一分析可得結(jié)果.【詳解】作出可行域如圖所示,當(dāng)時,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A【點睛】此題考查命題的真假判斷與應(yīng)用,著重考查作圖能力,熟練作圖,正確分析是關(guān)鍵,屬于中檔題.3D【解析】設(shè)正四面體的棱長為,取的中點為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內(nèi)切球的半徑,在中,根據(jù)勾股定理求出外接球的半徑,
8、利用球的體積公式即可求解.【詳解】設(shè)正四面體的棱長為,取的中點為,連接,作正四面體的高為,則,設(shè)內(nèi)切球的半徑為,內(nèi)切球的球心為,則,解得:;設(shè)外接球的半徑為,外接球的球心為,則或,在中,由勾股定理得:,解得, 故選:D【點睛】本題主要考查了多面體的內(nèi)切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎(chǔ)題.4C【解析】用周期函數(shù)的定義驗證.當(dāng)時,再利用單調(diào)性判斷.根據(jù)平移變換,函數(shù)的值域等價于函數(shù)的值域,而,當(dāng)時,再求值域.【詳解】因為,故錯誤;當(dāng)時,所以,所以在上單調(diào)遞增,故正確;函數(shù)的值域等價于函數(shù)的值域,易知,故當(dāng)時,故正確.故選:C.【點睛】本題考查三
9、角函數(shù)的性質(zhì),還考查推理論證能力以及分類討論思想,屬于中檔題.5B【解析】先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,(舍)或.【點睛】本題考查二項展開式問題,屬于基礎(chǔ)題6C【解析】結(jié)合不等式、三角函數(shù)的性質(zhì),對三個命題逐個分析并判斷其真假,即可選出答案.【詳解】對于命題,因為,所以“”是真命題,故其否定是假命題,即是假命題;對于命題,充分性:中,若,則,由余弦函數(shù)的單調(diào)性可知,即,即可得到,即充分性成立;必要性:中,若,結(jié)合余弦函數(shù)的單調(diào)性可知,即,可得到,即必要性成立.故命題正確;對于命題,將函數(shù)的圖象向左平移個單位長度,可得到的圖象,即命題是假命題故假命
10、題有.故選:C【點睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調(diào)性的應(yīng)用,考查了三角函數(shù)圖象的平移變換,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.7B【解析】由已知可得函數(shù)f(x)的周期與對稱軸,函數(shù)F(x)f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),作出函數(shù)f(x)與g(x)的圖象如圖,數(shù)形結(jié)合即可得到答案.【詳解】函數(shù)F(x)f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),由f(x)f (2x),得函數(shù)f(x)圖象關(guān)于x1對稱,f(x)為偶函數(shù),取xx+2,可得f(x+2)f(x)f(x),得函數(shù)周期為2.又當(dāng)x0,1時,f(x)x,且
11、f(x)為偶函數(shù),當(dāng)x1,0時,f(x)x,g(x),作出函數(shù)f(x)與g(x)的圖象如圖:由圖可知,兩函數(shù)圖象共10個交點,即函數(shù)F(x)f(x)在區(qū)間上零點的個數(shù)為10.故選:B.【點睛】本題考查函數(shù)的零點與方程根的關(guān)系,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,屬于中檔題.8D【解析】因為,所以,因為,所以,.綜上;故選D.9D【解析】求得直線的斜率,利用曲線的導(dǎo)數(shù),求得切點坐標(biāo),代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【點睛】本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎(chǔ)題.10C【解析】由基本音的諧波的定義可得,利用可
12、得,即可判斷選項.【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.11A【解析】由題意得到關(guān)于的等式,結(jié)合對數(shù)的運(yùn)算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點睛】本題以天文學(xué)問題為背景,考查考生的數(shù)學(xué)應(yīng)用意識信息處理能力閱讀理解能力以及指數(shù)對數(shù)運(yùn)算.12C【解析】由題意可利用等比數(shù)列的求和公式得莞草與蒲草n天后長度,進(jìn)而可得:,解出即可得出【詳解】由題意可得莞草與蒲草第n天的長度分別為 據(jù)題意得:, 解得2n12, n21故選:C【點睛】本題考查了等比數(shù)列的通項
13、公式與求和公式,考查了推理能力與計算能力,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13【解析】對函數(shù)求導(dǎo),根據(jù)函數(shù)單調(diào)性,即可容易求得函數(shù)的極大值.【詳解】依題意,得.所以當(dāng)時,;當(dāng)時,.所以當(dāng)時,函數(shù)有極大值.故答案為:.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),考查運(yùn)算求解能力以及化歸轉(zhuǎn)化思想,屬基礎(chǔ)題.14【解析】由題知,該四棱錐為正四棱錐,作出該正四棱錐的高和斜高,連接,則球心O必在的邊上,設(shè),由球與四棱錐的內(nèi)切關(guān)系可知,設(shè),用和表示四棱錐的體積,解得和的關(guān)系,進(jìn)而表示出內(nèi)切球的半徑,并求出半徑的最大值,進(jìn)而求出球的體積的最大值.【詳解】設(shè),由球O內(nèi)切于四棱錐可知,則,
14、球O的半徑,當(dāng)且僅當(dāng)時,等號成立,此時.故答案為:.【點睛】本題考查了棱錐的體積問題,內(nèi)切球問題,考查空間想象能力,屬于較難的填空壓軸題.15【解析】計算出角的取值范圍,結(jié)合正弦定理可求得的取值范圍.【詳解】,則,所以,由正弦定理,.因此,的取值范圍是.故答案為:.【點睛】本題主要考查了正弦定理,正弦函數(shù)圖象和性質(zhì),考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題16【解析】由二項式系數(shù)性質(zhì)求出,由二項展開式通項公式得出常數(shù)項的項數(shù),從而得常數(shù)項【詳解】由題意,展開式通項為,由得,常數(shù)項為故答案為:【點睛】本題考查二項式定理,考查二項式系數(shù)的性質(zhì),掌握二項展開式通項公式是解題關(guān)鍵三、解答題:共70分。解答應(yīng)寫出文字
15、說明、證明過程或演算步驟。17(1)(2)(3)直線平面,證明見解析【解析】取中點,連接,則,再由已知證明平面,以為坐標(biāo)原點,分別以,所在直線為,軸建立空間直角坐標(biāo)系,求出平面的一個法向量(1)求出的坐標(biāo),由與所成角的余弦值可得直線與平面所成角的正弦值;(2)求出平面的一個法向量,再由兩平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐標(biāo),由,結(jié)合平面,可得直線平面【詳解】底面是邊長為2的菱形,為等邊三角形取中點,連接,則,為等邊三角形,又平面平面,且平面平面,平面以為坐標(biāo)原點,分別以,所在直線為,軸建立空間直角坐標(biāo)系則,1,0,0,設(shè)平面的一個法向量為由,取,得(1)證明:設(shè)直線與平
16、面所成角為,則,即直線與平面所成角的正弦值為;(2)設(shè)平面的一個法向量為,由,得二面角的余弦值為;(3),又平面,直線平面【點睛】本題考查線面平行的證明,考查二面角的余弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理能力與計算能力,屬于中檔題18()見解析; ()見解析; ().【解析】(I)取的中點,連接,通過證明四邊形為平行四邊形,證得,由此證得平面.(II)利用,證得平面,從而得到平面,由此證得平面平面.(III)作交于點,易得面,利用棱錐的體積公式,計算出棱錐的體積.【詳解】()取的中點,連接,則,故四邊形為平行四邊形.故.又面,平面,所以面.()為等邊三角形,為
17、中點,所以.又,所以面.又,故面,所以面平面.()幾何體是四棱錐,作交于點,即面,.【點睛】本小題主要考查線面平行的證明,考查面面垂直的證明,考查四棱錐體積的求法,考查空間想象能力,所以中檔題.19();().【解析】()由正弦定理邊化角,再結(jié)合轉(zhuǎn)化即可求解;()可設(shè),由,再由余弦定理解得,對中,由余弦定理有,通過勾股定理逆定理可得,進(jìn)而得解【詳解】()由正弦定理得.而.由以上兩式得,即.由于,所以,又由于,得.()設(shè),在中,由正弦定理有.由余弦定理有,整理得,由于,所以.在中,由余弦定理有.所以,所以.【點睛】本題考查正弦定理和余弦定理的綜合運(yùn)用,屬于中檔題20(1)詳見解析;(2).【解析
18、】(1)取中點,連,可得,結(jié)合平面EAD平面ABCD,可證平面ABCD,進(jìn)而有,再由底面是菱形可得,可得,可證得平面,即可證明結(jié)論;(2)設(shè)底面邊長為,由EFAB,AB2EF,求出體積,建立的方程,即可求出結(jié)論.【詳解】(1)取中點,連,底面ABCD為菱形,平面EAD平面ABCD,平面平面平面,平面平面,底面ABCD為菱形,為中點,平面,平面平面,;(2)設(shè)菱形ABCD的邊長為,則,所以菱形ABCD的邊長為.【點睛】本題考查線線垂直的證明和椎體的體積,注意空間中垂直關(guān)系之間的相互轉(zhuǎn)化,體積問題要熟練應(yīng)用等體積方法,屬于中檔題.21(1)(2)點的坐標(biāo)為【解析】將拋物線方程與圓方程聯(lián)立,消去得到關(guān)于的一元二次方程, 拋物線與圓有四個交點需滿足關(guān)于的一元二次方程在上有兩個不等的實數(shù)根,根據(jù)二次函數(shù)的有關(guān)性質(zhì)即可得到關(guān)于的不等式組,解不等式即可.不妨設(shè)拋物線與圓的四個交點坐標(biāo)為,據(jù)此可表示出直線、的方程,聯(lián)立方程即可表示出點坐標(biāo),再根據(jù)等腰梯形的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度高校教師高級職稱聘用協(xié)議5篇
- 2025年二手車買賣數(shù)據(jù)安全及隱私保護(hù)協(xié)議3篇
- 2025年度二零二五年度體育用品店租賃及銷售合同范本4篇
- 2025版美容美發(fā)店員工福利待遇與晉升管理合同4篇
- 對公金融產(chǎn)品的多場景創(chuàng)新研究
- 2025年度校園車位租賃及管理服務(wù)合同樣本3篇
- 2024水電工程設(shè)計與施工一體化合同范本3篇
- 2025年度專業(yè)廚房設(shè)備維修保養(yǎng)服務(wù)合同11篇
- 2025年度鋁扣板裝飾工程材料供應(yīng)合同范本3篇
- 個人借款用于二零二四年度創(chuàng)業(yè)投資合同3篇
- 工會換屆公示文件模板
- 江蘇省南京市協(xié)同體七校2024-2025學(xué)年高三上學(xué)期期中聯(lián)合考試英語試題答案
- 青島版二年級下冊三位數(shù)加減三位數(shù)豎式計算題200道及答案
- GB/T 12723-2024單位產(chǎn)品能源消耗限額編制通則
- GB/T 16288-2024塑料制品的標(biāo)志
- 麻風(fēng)病防治知識課件
- 干部職級晉升積分制管理辦法
- TSG ZF003-2011《爆破片裝置安全技術(shù)監(jiān)察規(guī)程》
- 2024年代理記賬工作總結(jié)6篇
- 電氣工程預(yù)算實例:清單與計價樣本
- VOC廢氣治理工程中電化學(xué)氧化技術(shù)的研究與應(yīng)用
評論
0/150
提交評論