2022春八年級數(shù)學下冊第3章圖形的平移與旋轉(zhuǎn)3.3中心對稱3.3.1中心對稱說課稿1新版北師大版_第1頁
2022春八年級數(shù)學下冊第3章圖形的平移與旋轉(zhuǎn)3.3中心對稱3.3.1中心對稱說課稿1新版北師大版_第2頁
2022春八年級數(shù)學下冊第3章圖形的平移與旋轉(zhuǎn)3.3中心對稱3.3.1中心對稱說課稿1新版北師大版_第3頁
全文預覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、PAGE Page * MERGEFORMAT 3中心對稱尊敬的各位領(lǐng)導、各位評委:大家好! 今天我說課的課題是中心對稱。一、教材分析1、教材的地位與作用本節(jié)課是(北師版)八年級數(shù)學(下)第三章第3節(jié)中心對稱。中心對稱是初中數(shù)學教學中的一項重要內(nèi)容,它與軸對稱和軸對稱圖形有著緊密的聯(lián)系和區(qū)別,同時與旋轉(zhuǎn)又有著不可分割的聯(lián)系。實際生活中也隨處可見中心對稱的應用.通過對這一節(jié)課的學習,可以完善初中對“對稱圖形”的知識講授,并為前面平行四邊形的學習做必要的補充。 2、教學目標(1)知識與能力:理解兩個圖形關(guān)于一點對稱的概念,并掌握它們的性質(zhì)。會畫一個圖形關(guān)于某一點的對稱圖形。 (2)過程與方法: 在

2、探索兩個圖形關(guān)于某一點對稱的過程中,引導學生經(jīng)歷“觀察、猜想、歸納、驗證”的數(shù)學思想。提高了學生分析問題、解決問題的能力。 (3)情感態(tài)度與價值觀:深刻體會對稱在生活中的廣泛存在及運用價值,通過設(shè)計簡單的對稱圖形,體驗中心對稱的美感,提高同學們對數(shù)學的興趣。3、重點、難點(1)重點:中心對稱的概念和性質(zhì)。(2)難點:中心對稱的性質(zhì)的應用。突破措施1.創(chuàng)設(shè)情景,激發(fā)思維:創(chuàng)設(shè)生動、啟發(fā)性的問題情景,激發(fā)學生的問題沖突,讓學生在感到有趣有意思的狀態(tài)下進入學習過程;.自主探索,敢于猜想:充分讓學生自己動手操作,大膽猜想問題的結(jié)論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流協(xié)作,從而形成

3、生動的課堂環(huán)境;.張揚個性,展示風采:實行小組合作制,各小組中自己推薦一人擔任發(fā)言人,一人擔任書記員,在討論結(jié)束后,由小組發(fā)言人匯報本小組的討論結(jié)果,并可上臺利用多媒體展示臺展示本小組的優(yōu)秀作品,其他小組給予評價。這樣既保證討論的有效性,也調(diào)動了學生的學習積極性。二、教法分析和學法分析1、教法分析根據(jù)新課程理念、本節(jié)教材的特點和學生的心理特征,我確定了以啟發(fā)、實踐、交流為主的教學方法。努力培養(yǎng)學生觀察、思考、交流、合作的學習品質(zhì),以及猜想、類比、歸納、概括的思維習慣。幾何圖形的旋轉(zhuǎn)是學生學習的難點,為了培養(yǎng)學生的抽象思維能力,我運用了的多媒體技術(shù),把動態(tài)的問題直觀地表現(xiàn)出來,使學生更容易理解并

4、掌握中心對稱的概念與性質(zhì)。2、學法分析本節(jié)課,我從學生已有的生活體驗出發(fā),引導學生通過各種形式的活動,從數(shù)學的角度去觀察事物、思考問題,讓學生在畫圖過程中培養(yǎng)動手動腦的能力,并在動手動腦的過程中逐步理解中心對稱的定義和性質(zhì),使學生真正實現(xiàn)由“學會”到“會學”的質(zhì)的飛躍。三、教學程序設(shè)計1、創(chuàng)設(shè)情景,引入新知首先復習軸對稱與旋轉(zhuǎn)圖形的定義,結(jié)合課本,讓學生觀察圖形,回答問題:把其中一個圖案繞點O旋轉(zhuǎn)180,你有什么發(fā)現(xiàn)?先讓學生從旋轉(zhuǎn)變換的角度分別觀察兩個圖形之間的關(guān)系,從而引入中心對稱的定義。讓學生體會到知識間的內(nèi)在聯(lián)系,中心對稱實際上是旋轉(zhuǎn)變換的一種特殊形式(中心對稱中要求旋轉(zhuǎn)角必須為180

5、度)滲透了從一般到特殊的數(shù)學思想方法。接著,對“軸對稱”和“中心對稱”的概念進行比較,我采用列表格的方式,從三個方面分別讓學生去填,以便加深對兩個概念的區(qū)別與聯(lián)系的理解。2、動手實踐,探究新知學生在教師的引導下動手操作,完成第64頁探究,旋轉(zhuǎn)三角尺,畫關(guān)于點O對稱的兩個三角形。學生自己動手畫出兩個中心對稱的三角形后,及時開展中心對稱性質(zhì)的研究。學生在觀察和討論后,由師生合作,歸納出中心對稱的性質(zhì): (1) 關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分; (2) 關(guān)于中心對稱的兩個圖形是全等圖形讓學生嘗試自己證明ABC與ABC全等,然后在教師的引導下相互交流。3、應

6、用新知1)講授65頁例1。(1)選擇點O為對稱中心,畫出點A關(guān)于點O的對稱點A; (2)選擇點O為對稱中心,畫出與ABC關(guān)于點O的對稱ABC在老師的引導下,共同完成作圖,并規(guī)范畫圖方法:要畫一個多邊形關(guān)于已知點的對稱圖形,只要畫出這個多邊形的各個頂點關(guān)于已知點的對稱點,再順次連接各點即可。在本次活動中,教師應重點關(guān)注: (1) 學生畫出圖形后,能否加深對中心對稱的性質(zhì)的理解; (2) 學生不同的作圖方法2)、課后練習。以適當?shù)木毩曥柟瘫竟?jié)課的知識點,使學生能熟練畫出成中心對稱的圖形,鞏固學生的作圖能力,并會簡單應用中心對稱的性質(zhì)3)、拓展應用已知四邊形ABCD,分別以頂點A,BC邊的中點,四邊形內(nèi)部的一點為對稱中心,畫對稱圖形在同一個圖形中,進行不同的變式訓練,來鞏固加深同學們對知識的理解,提高學生運用知識,解決問題的能力。4、歸納小結(jié)今天這節(jié)課即將結(jié)束,你能告訴老師你的收獲嗎?中心對稱的概念把一個圖形繞著某一點旋轉(zhuǎn)180,如果旋轉(zhuǎn)后的圖形與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點叫做對稱中心中心對稱的性質(zhì)。關(guān)于中心對稱的兩個圖形是全等形。 關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。 關(guān)于中心對稱的兩個圖形,對應線段平行(或者在同一直線上)且相等。 學生相互歸納和補充(幻燈片展示)。教師應重點關(guān)注不同層次的學生對本節(jié)知識的理解、掌握

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論