大一上學(xué)期微積分2_第1頁(yè)
大一上學(xué)期微積分2_第2頁(yè)
大一上學(xué)期微積分2_第3頁(yè)
大一上學(xué)期微積分2_第4頁(yè)
大一上學(xué)期微積分2_第5頁(yè)
已閱讀5頁(yè),還剩42頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、二、數(shù)列的有關(guān)概念四、小結(jié) 思考題三、數(shù)列極限的定義第一節(jié) 數(shù)列的極限一、引例“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”1. 割圓術(shù):播放劉徽一、引例正六邊形的面積正十二邊形的面積正 形的面積2. 截丈問(wèn)題:“一尺之棰,日截其半,萬(wàn)世不竭”二、數(shù)列的有關(guān)概念例如(sequence)注意:1.數(shù)列對(duì)應(yīng)著數(shù)軸上一個(gè)點(diǎn)列.可看作一動(dòng)點(diǎn)在數(shù)軸上依次取2.數(shù)列是整標(biāo)函數(shù)2. 有界性例如,有界;無(wú)界同樣,3. 單調(diào)性為單調(diào)增數(shù)列;單調(diào)減數(shù)列單調(diào)增數(shù)列和單調(diào)減數(shù)列統(tǒng)稱為單調(diào)數(shù)列4. 子數(shù)列 (subsequence)注意:例如,播放三、數(shù)列極限的定義(Limit of a seq

2、uence)問(wèn)題:當(dāng) 無(wú)限增大時(shí), 是否無(wú)限接近于某一確定的數(shù)值?如果是,如何確定?問(wèn)題:“無(wú)限接近”意味著什么?如何用數(shù)學(xué)語(yǔ)言刻劃它.通過(guò)上面演示實(shí)驗(yàn)的觀察:如果數(shù)列沒(méi)有極限,就說(shuō)數(shù)列是發(fā)散的.注意:幾何解釋:其中數(shù)列極限的定義未給出求極限的方法.例1證所以,注意:例2證所以,說(shuō)明:常數(shù)列的極限等于同一常數(shù).小結(jié):用定義證數(shù)列極限存在時(shí),關(guān)鍵是任意給定 尋找N,但不必要求最小的N. 例3證例4證例5證四、小結(jié) 思考題數(shù)列:研究其變化規(guī)律;數(shù)列極限:極限思想、精確定義、幾何意義;思考題證明要使只要使從而由得取當(dāng) 時(shí),必有 成立思考題解答(等價(jià))證明中所采用的實(shí)際上就是不等式即證明中沒(méi)有采用“適

3、當(dāng)放大” 的值從而 時(shí),僅有 成立,但不是 的充分條件反而縮小為練 習(xí) 題1、割圓術(shù):“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”劉徽一、概念的引入1、割圓術(shù):“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”劉徽一、概念的引入“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”1、割圓術(shù):劉徽一、概念的引入“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”1、割圓術(shù):劉徽一、概念的引入“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”1、割圓術(shù):劉徽一、概念的引入“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”1.割圓術(shù):劉徽一、概念的引入“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”1.割圓術(shù):劉徽一、概念的引入“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”1.割圓術(shù):劉徽一、概念的引入“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”1.割圓術(shù):劉徽一、概念的引入 三、數(shù)列的極限三、數(shù)列的極限三、數(shù)列的極限三、數(shù)列的極限三、數(shù)列的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論